Reputation: 23099
I have a df as follows:
Store Spend_1 Spend_2 Spend_3 Spend_4 Variance_1 Variance_2 Variance_3 Variance_4
0 1 200 230 189 200 -14 16 -6 18
1 2 224 104 240 203 -17 -11 17 -18
2 3 220 168 131 210 10 -9 12 19
3 4 143 187 139 188 -1 -17 -20 -9
4 5 179 121 162 131 6 -25 5 20
5 6 208 158 140 191 16 -14 -22 -6
I'm attempting to apply a custom sort on the column names to order it as so :
Store Spend_1 Variance_1 Spend_2 Variance_2 Spend_3 Variance_3 Spend_4 Variance_4
0 1 200 -14 230 16 189 -6 200 18
1 2 224 -17 104 -11 240 17 203 -18
2 3 220 10 168 -9 131 12 210 19
3 4 143 -1 187 -17 139 -20 188 -9
4 5 179 6 121 -25 162 5 131 20
5 6 208 16 158 -14 140 -22 191 -6
I've tried the simple sorted
but obviously this applies alphabetically, ignoring the integer at the end.
I've toyed around with enumerating
as number
, cols
the df.columns
changing the strings to ints, applying a sort then using the numbers in the iloc
but I'm not sure how apply a custom sort that way.
Upvotes: 2
Views: 68
Reputation: 88295
Here's one approach splitting the columns on _
, reversing the resulting lists so that further sorting prioritises the trailing digits and using pandas.Index.argsort
:
df.iloc[:,[0]+[*df.columns.str.split('_').str[::-1].argsort()[:-1]]]
Store Spend_1 Variance_1 Spend_2 Variance_2 Spend_3 Variance_3 \
0 1 200 -14 230 16 189 -6
1 2 224 -17 104 -11 240 17
2 3 220 10 168 -9 131 12
3 4 143 -1 187 -17 139 -20
4 5 179 6 121 -25 162 5
5 6 208 16 158 -14 140 -22
Spend_4 Variance_4
0 200 18
1 203 -18
2 210 19
3 188 -9
4 131 20
5 191 -6
Upvotes: 1
Reputation: 863351
Idea is use key
parameetr by 2 values - values after _
converted to inetegr
s with first values before _
, but solution is apply for all columns without first with df.columns[1:]
, so last is added first column by df.columns[:1].tolist()
:
cols = df.columns[:1].tolist() +sorted(df.columns[1:],
key=lambda x: (int(x.split('_')[1]), x.split('_')[0]))
df = df[cols]
print (df)
Store Spend_1 Variance_1 Spend_2 Variance_2 Spend_3 Variance_3 \
0 1 200 -14 230 16 189 -6
1 2 224 -17 104 -11 240 17
2 3 220 10 168 -9 131 12
3 4 143 -1 187 -17 139 -20
4 5 179 6 121 -25 162 5
5 6 208 16 158 -14 140 -22
Spend_4 Variance_4
0 200 18
1 203 -18
2 210 19
3 188 -9
4 131 20
5 191 -6
Upvotes: 3
Reputation: 769
simplest way i can think of is defining your own key to the sort
df = df.reindex(sorted(df.columns, key=lambda x: int(x.split("_")[1]) if "_" in x else 0), axis=1)
Upvotes: 1
Reputation: 45752
You can pass a key
t to sorted
to do your own custom sorting:
sorted_columns = sorted(df.columns, key = lambda col: col[-1] + col[:-1])
df[sorted_columns]
The ideas is to put the final integer first. This will breakdown if you can go into double digits.
Upvotes: 1