Kaio Giovanni
Kaio Giovanni

Reputation: 3

Pandas Concatenation not working properly

So I've been setting up a label archive on my deep learning classifier and I wanted to concatenate the labels of an already existing 2D archive into one I just made.

The one that exists is 'y_trainvalid' (39209, 43), which stands for 39209 images in 43 classes. The new label archive I'm trying to add is 'new_file_label' (23, 43). On these archives, the number set to 1 if it matches the class and 0 if it doesn't. Here's a sample of both of them:

print(y_trainvalid)
print(new_file_label)

       0    1    2    3    4    5    6   ...   36   37   38   39   40   41   42
0     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
1     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
2     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
3     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  1.0  0.0  0.0  0.0  0.0
5     0.0  0.0  0.0  0.0  0.0  1.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
6     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
7     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  1.0  0.0  0.0  0.0
8     0.0  1.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
9     0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
10    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
11    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
12    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
13    0.0  0.0  1.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
14    0.0  0.0  0.0  1.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
15    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
16    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
17    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
18    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
19    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
20    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
21    0.0  1.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
22    0.0  0.0  0.0  0.0  1.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
23    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
24    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
25    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
26    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
27    0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
28    0.0  0.0  1.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
29    0.0  0.0  0.0  0.0  0.0  1.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
...   ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...
4380  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4381  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4382  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4383  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4384  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4385  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4386  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4387  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4388  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4389  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4390  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4391  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4392  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4393  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4394  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4395  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4396  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4397  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4398  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4399  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4400  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4401  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4402  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4403  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4404  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4405  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4406  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4407  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4408  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4409  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0

[39209 rows x 43 columns]
      0    1    2    3    4    5    6  ...   36   37   38   39   40   41   42
0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
1   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
2   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
3   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
4   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
5   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
6   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
7   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
8   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
9   0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
10  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
11  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
12  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
13  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
14  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
15  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
16  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
17  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
18  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
19  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
20  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
21  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
22  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0

[23 rows x 43 columns]

When I tried to concatenate using this command:

y_trainvalid2 = pd.concat([y_trainvalid, new_file_label], ignore_index=True)

Something like this appeared:

 0    1    2    3    4    5    6  ...   41   42    5    6    7    8    9
39204  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39205  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39206  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39207  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39208  0.0  0.0  0.0  0.0  0.0  0.0  0.0  ...  NaN  NaN  NaN  NaN  NaN  NaN  NaN
39209  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39210  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39211  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39212  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39213  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39214  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39215  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39216  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39217  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39218  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39219  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39220  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39221  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39222  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39223  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39224  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39225  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39226  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39227  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39228  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39229  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39230  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0
39231  NaN  NaN  NaN  NaN  NaN  NaN  NaN  ...  0.0  0.0  0.0  0.0  0.0  0.0  0.0

As if it doubled the amount of columns to fit the data instead of putting the new data just below it. I'm not sure why this is happening cause I'm pretty sure both label archives have the same number of columns.

When I print use the 'y_trainvalid2.head().to_dict()' command, this appears:

{0: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '0': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 1: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '1': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 10: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '10': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 11: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '11': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 12: {0: 1.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '12': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 13: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '13': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 14: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '14': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 15: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '15': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 16: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '16': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 17: {0: 0.0, 1: 1.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '17': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 18: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '18': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 19: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '19': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 2: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '2': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 20: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '20': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 21: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '21': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 22: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '22': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 23: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '23': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 24: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '24': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 25: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '25': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 26: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '26': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 27: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '27': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 28: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '28': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 29: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '29': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 3: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '3': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 30: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '30': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 31: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '31': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 32: {0: 0.0, 1: 0.0, 2: 0.0, 3: 1.0, 4: 0.0},
 '32': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 33: {0: 0.0, 1: 0.0, 2: 1.0, 3: 0.0, 4: 0.0},
 '33': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 34: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '34': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 35: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '35': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 36: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '36': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 37: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '37': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 38: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 1.0},
 '38': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 39: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '39': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 4: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '4': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 40: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '40': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 41: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '41': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 42: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '42': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 5: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '5': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 6: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '6': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 7: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '7': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 8: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '8': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan},
 9: {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
 '9': {0: nan, 1: nan, 2: nan, 3: nan, 4: nan}}

How do I solve this problem?

Upvotes: 0

Views: 279

Answers (1)

B.Gees
B.Gees

Reputation: 1155

y_trainvalid.columns = [str(x) for x in y_trainvalid.columns]
new_file_label.columns = [str(x) for x in new_file_label.columns]
y_trainvalid2 = pd.concat([y_trainvalid, new_file_label])

Upvotes: 1

Related Questions