Reputation: 1250
I need to find 2 to-the-power N where N is a very large number (Java BigInteger type)
Java BigInteger Class has pow method but it takes only integer value as exponent.
So, I wrote a method as follows:
static BigInteger twoToThePower(BigInteger n)
{
BigInteger result = BigInteger.valueOf(1L);
while (n.compareTo(BigInteger.valueOf((long) Integer.MAX_VALUE)) > 0)
{
result = result.shiftLeft(Integer.MAX_VALUE);
n = n.subtract(BigInteger.valueOf((long) Integer.MAX_VALUE));
}
long k = n.longValue();
result = result.shiftLeft((int) k);
return result;
}
My code works fine, I am just sharing my idea and curious to know if there is any other better idea?
Thank you.
Upvotes: 3
Views: 787
Reputation: 356
Emmanuel Lonca's answer is correct. But, by Manoj Banik's idea, I would like to share my idea too.
My code do the same thing as Manoj Banik's code in faster way. The idea is init the buffer, and put the bit 1 in to correct location. I using the shift left operator on 1 byte instead of shiftLeft
method.
Here is my code:
static BigInteger twoToThePower(BigInteger n){
BigInteger eight = BigInteger.valueOf(8);
BigInteger[] devideResult = n.divideAndRemainder(eight);
BigInteger bufferSize = devideResult[0].add(BigInteger.ONE);
int offset = devideResult[1].intValue();
byte[] buffer = new byte[bufferSize.intValueExact()];
buffer[0] = (byte)(1 << offset);
return new BigInteger(1,buffer);
}
But it still slower than BigInteger.pow
Then, I found that class BigInteger
has a method called setBit
. It also accepts parameter type int
like the pow
method. Using this method is faster than BigInteger.pow
.
The code can be:
static BigInteger twoToThePower(BigInteger n){
return BigInteger.ZERO.setBit(n.intValueExact());
}
Class BigInteger
has a method called modPow
also. But It need one more parameter. This means you should specify the modulus
and your result should be smaller than this modulus
. I did not do a performance test for modPow
, but I think it should slower than the pow
method.
Upvotes: 1
Reputation: 42009
An interesting question. Just to add a little more information to the fine accepted answer, examining the openjdk 8 source code for BigInteger reveals that the bits are stored in an array final int[] mag;
. Since arrays can contain at most Integer.MAX_VALUE
elements this immediately puts a theoretical bound on this particular implementation of BigInteger of 2(32 * Integer.MAX_VALUE). So even your method of repeated left-shifting can only exceed the size of an int by at most a factor of 32.
So, are you ready to produce your own implementation of BigInteger?
Upvotes: 1
Reputation: 196
You cannot use BigInteger to store the result of your computation. From the javadoc :
BigInteger must support values in the range -2^Integer.MAX_VALUE (exclusive) to +2^Integer.MAX_VALUE (exclusive) and may support values outside of that range.
This is the reason why the pow method takes an int. On my machine, BigInteger.ONE.shiftLeft(Integer.MAX_VALUE) throws a java.lang.ArithmeticException (message is "BigInteger would overflow supported range").
Upvotes: 2
Reputation: 1454
By using repeated squaring you can achieve your goal. I've posted below sample code to understand the logic of repeated squaring.
static BigInteger pow(BigInteger base, BigInteger exponent) {
BigInteger result = BigInteger.ONE;
while (exponent.signum() > 0) {
if (exponent.testBit(0)) result = result.multiply(base);
base = base.multiply(base);
exponent = exponent.shiftRight(1);
}
return result;
}
Upvotes: 1