Reputation: 125
A parser application where I’m working on calls for recursive rules. Besides looking into the Recursive AST tutorial examples of Boost Spirit X3 which can be found here: https://www.boost.org/doc/libs/develop/libs/spirit/doc/x3/html/index.html, I was looking for a solution with a std::variant of some types as well as a std::vector of that same variant type.
In the StackOverflow post titled: Recursive rule in Spirit.X3, I found the code from the answer from sehe a decent starting point for my parser.
I have repeated the code here but I have limited the input strings to be tested. Because the full list from the original is not relevant for this question here.
//#define BOOST_SPIRIT_X3_DEBUG
#include <iostream>
#include <boost/fusion/adapted.hpp>
#include <boost/spirit/home/x3.hpp>
#include <string>
#include <vector>
#include <variant>
struct value: std::variant<int,float,std::vector<value>>
{
using base_type = std::variant<int,float,std::vector<value>>;
using base_type::variant;
friend std::ostream& operator<<(std::ostream& os, base_type const& v) {
struct {
std::ostream& operator()(float const& f) const { return _os << "float:" << f; }
std::ostream& operator()(int const& i) const { return _os << "int:" << i; }
std::ostream& operator()(std::vector<value> const& v) const {
_os << "tuple: [";
for (auto& el : v) _os << el << ",";
return _os << ']';
}
std::ostream& _os;
} vis { os };
return std::visit(vis, v);
}
};
namespace parser {
namespace x3 = boost::spirit::x3;
x3::rule<struct value_class, value> const value_ = "value";
x3::rule<struct o_tuple_class, std::vector<value> > o_tuple_ = "tuple";
x3::real_parser<float, x3::strict_real_policies<float> > float_;
const auto o_tuple__def = "tuple" >> x3::lit(':') >> ("[" >> value_ % "," >> "]");
const auto value__def
= "float" >> (':' >> float_)
| "int" >> (':' >> x3::int_)
| o_tuple_
;
BOOST_SPIRIT_DEFINE(value_, o_tuple_)
const auto entry_point = x3::skip(x3::space) [ value_ ];
}
int main()
{
for (std::string const str : {
"float: 3.14",
"int: 3",
"tuple: [float: 3.14,int: 3]",
"tuple: [float: 3.14,int: 3,tuple: [float: 4.14,int: 4]]"
}) {
std::cout << "============ '" << str << "'\n";
//using boost::spirit::x3::parse;
auto first = str.begin(), last = str.end();
value val;
if (parse(first, last, parser::entry_point, val))
std::cout << "Parsed '" << val << "'\n";
else
std::cout << "Parse failed\n";
if (first != last)
std::cout << "Remaining input: '" << std::string(first, last) << "'\n";
}
}
However I would like to use a traditional visitor class rather than making ostream a friend in the variant class. You know just a struct/class with a bunch of function objects for each type you encounter in the variant and a "for loop" for the vector that calls std::visit for each element.
My goal for the traditional visitor class is to be able to maintain a state machine during printing.
My own attempts to write this visitor class did fail because I ran into an issue with my GCC 8.1 compiler. With GCC during compilation std::variant happens to be std::variant_size somehow and I got the following error:
error: incomplete type 'std::variant_size' used in nested name specifier
More about this here: Using std::visit on a class inheriting from std::variant - libstdc++ vs libc++
Is it possible giving this constraint on GCC to write a visitor class for the code example I included, so that the ostream stuff can be removed?
Upvotes: 1
Views: 447
Reputation: 392833
Is it possible giving this constraint on GCC to write a visitor class for the code example I included, so that the ostream stuff can be removed?
Sure. Basically, I see three approaches:
You can specialize the implementation details accidentally required by GCC:
struct value: std::variant<int,float,std::vector<value>> {
using base_type = std::variant<int,float,std::vector<value>>;
using base_type::variant;
};
namespace std {
template <> struct variant_size<value> :
std::variant_size<value::base_type> {};
template <size_t I> struct variant_alternative<I, value> :
std::variant_alternative<I, value::base_type> {};
}
See it live on Wandbox (GCC 8.1)
Extending the std namespace is fraught (though I think it's legal for
user-defined types). So, you can employ my favorite pattern and hide th
estd::visit
dispatch in the function object itself:
template <typename... El>
void operator()(std::variant<El...> const& v) const { std::visit(*this, v); }
Now you can simply call the functor and it will automatically dispatch
on your own variant-derived type because that operator()
overload does
NOT have the problems that GCC stdlib has:
if (parse(first, last, parser::entry_point, val))
{
display_visitor display { std::cout };
std::cout << "Parsed '";
display(val);
std::cout << "'\n";
}
I like this the least, but it does have merit: there's no magic and no tricks:
struct value: std::variant<int,float,std::vector<value>> {
using base_type = std::variant<int,float,std::vector<value>>;
using base_type::variant;
base_type const& as_variant() const { return *this; }
base_type& as_variant() { return *this; }
};
struct display_visitor {
void operator()(value const& v) const { std::visit(*this, v.as_variant()); }
// ...
Again, live
After thinking a bit more, I'd recommend the last approach, due to the relative simplicity. Clever is often a code-smell :)
Full listing for future visitors:
//#define BOOST_SPIRIT_X3_DEBUG
#include <iostream>
#include <boost/fusion/adapted.hpp>
#include <boost/spirit/home/x3.hpp>
#include <string>
#include <vector>
#include <variant>
struct value: std::variant<int,float,std::vector<value>> {
using base_type = std::variant<int,float,std::vector<value>>;
using base_type::variant;
base_type const& as_variant() const { return *this; }
base_type& as_variant() { return *this; }
};
struct display_visitor {
std::ostream& _os;
void operator()(value const& v) const { std::visit(*this, v.as_variant()); }
void operator()(float const& f) const { _os << "float:" << f; }
void operator()(int const& i) const { _os << "int:" << i; }
void operator()(std::vector<value> const& v) const {
_os << "tuple: [";
for (auto& el : v) {
operator()(el);
_os << ",";
}
_os << ']';
}
};
namespace parser {
namespace x3 = boost::spirit::x3;
x3::rule<struct value_class, value> const value_ = "value";
x3::rule<struct o_tuple_class, std::vector<value> > o_tuple_ = "tuple";
x3::real_parser<float, x3::strict_real_policies<float> > float_;
const auto o_tuple__def = "tuple" >> x3::lit(':') >> ("[" >> value_ % "," >> "]");
const auto value__def
= "float" >> (':' >> float_)
| "int" >> (':' >> x3::int_)
| o_tuple_
;
BOOST_SPIRIT_DEFINE(value_, o_tuple_)
const auto entry_point = x3::skip(x3::space) [ value_ ];
}
int main()
{
for (std::string const str : {
"float: 3.14",
"int: 3",
"tuple: [float: 3.14,int: 3]",
"tuple: [float: 3.14,int: 3,tuple: [float: 4.14,int: 4]]"
}) {
std::cout << "============ '" << str << "'\n";
//using boost::spirit::x3::parse;
auto first = str.begin(), last = str.end();
value val;
if (parse(first, last, parser::entry_point, val))
{
display_visitor display { std::cout };
std::cout << "Parsed '";
display(val);
std::cout << "'\n";
}
else
std::cout << "Parse failed\n";
if (first != last)
std::cout << "Remaining input: '" << std::string(first, last) << "'\n";
}
}
Upvotes: 2