Dan Schmidt
Dan Schmidt

Reputation: 137

Converting Monthly Data to Daily Data in Python

I am trying to convert as set of monthly data points to a weekly basis but to attain that goal, I am breaking the data set down to daily and then aggregating it to the week level. While the aggregation is happening (through groupby), I am unable to breakdown the data into daily level.

Month_End_Date  A   B   C   D
2/28/2019   Pikachu Starter 100000  5302
2/28/2019   Jolteon Evolution   250000  7935
3/31/2019   Charmander  Starter 62810   5103
3/31/2019   Bulbasaur   Starter 16868   6035
4/30/2019   Flareon Evolution   62810   5103
4/30/2019   Eevee   Starter 16868   6035
5/31/2019   Glaceon Evolution   62810   5103
5/31/2019   Leafeon Evolution   16868   6035
6/30/2019   Umbreon Evolution   62810   5103
6/30/2019   Espeon  Evolution   16868   6035

I am trying to convert say the first row into

Month_End_Date  A   B   C   D
2/1/2019    Pikachu Starter 3571.428571 189.3571429
2/2/2019    Pikachu Starter 3571.428571 189.3571429
2/3/2019    Pikachu Starter 3571.428571 189.3571429
2/4/2019    Pikachu Starter 3571.428571 189.3571429
2/5/2019    Pikachu Starter 3571.428571 189.3571429

where the daily values have been divided by 28 (since the february month has 28 days)

I have searched ffill amongst other things but unable to quite solve the problem

Upvotes: 4

Views: 2178

Answers (1)

jezrael
jezrael

Reputation: 862581

First remove duplicates per column Month_End_Date by DataFrame.drop_duplicates, then DataFrame.resample by forward filling missing values and last filter only 28 rows per month and year:

#convert column to datetimes and then to first day of month
df['Month_End_Date'] = (pd.to_datetime(df['Month_End_Date'], format='%m/%d/%Y')
                         .dt.to_period('m').dt.to_timestamp())
df = df.drop_duplicates('Month_End_Date').set_index('Month_End_Date')
#for duplicated last row of data
df.loc[df.index[-1] + pd.offsets.MonthEnd(1)] = df.iloc[-1]
df = df.resample('d').ffill()

df1 = df[df.groupby(df.index.to_period('m')).cumcount() < 28]
print (df1.tail())
                      A          B      C     D
Month_End_Date                                 
2019-06-24      Umbreon  Evolution  62810  5103
2019-06-25      Umbreon  Evolution  62810  5103
2019-06-26      Umbreon  Evolution  62810  5103
2019-06-27      Umbreon  Evolution  62810  5103
2019-06-28      Umbreon  Evolution  62810  5103

If need all values, not only first per groups create helper column by counter with GroupBy.cumcount and resample chain with groupby:

df['Month_End_Date'] = (pd.to_datetime(df['Month_End_Date'], format='%m/%d/%Y')
                         .dt.to_period('m').dt.to_timestamp())
df['g'] = df.groupby('Month_End_Date').cumcount()
df = df.set_index('Month_End_Date')
df.loc[df.index[-1] + pd.offsets.MonthEnd(1)] = df.iloc[-1]

df = df.groupby('g').resample('d').ffill().reset_index(level=0, drop=True)
df2 = df[df.groupby(['g', df.index.to_period('m')]).cumcount() < 28]
print (df2.tail())
                     A          B      C     D  g
Month_End_Date                                   
2019-06-24      Espeon  Evolution  16868  6035  1
2019-06-25      Espeon  Evolution  16868  6035  1
2019-06-26      Espeon  Evolution  16868  6035  1
2019-06-27      Espeon  Evolution  16868  6035  1
2019-06-28      Espeon  Evolution  16868  6035  1

Upvotes: 2

Related Questions