Reputation: 21
I have a list of integers, and I need to find a way to get the maximum sum of a subset of them, adding elements to the total until the sum is equal to (or greater than) a fixed cutoff. I know this seems similar to the knapsack, but I was unsure whether it was equivalent.
Sorting the array and adding the maximum element until sum <= cutoff does not work. Observe the following list:
list = [6, 5, 4, 4, 4, 3, 2, 2, 1]
cutoff = 15
For this list, doing it the naive way results in a sum of 15, which is very sub-optimal. As far as I can see, the maximum you could arrive at using this list is 20, by adding 4 + 4 + 4 + 2 + 6. If this is just a different version of knapsack, I can just implement a knapsack solution, as I probably have small enough lists to get away with this, but I'd prefer to do something more efficient.
Upvotes: 1
Views: 129
Reputation: 46507
First of all in any sum, you won't have produced a worse result by adding the largest element last. So there is no harm in assuming that the elements are sorted from smallest to largest as a first step.
And now you use a dynamic programming approach similar to the usual subset sum.
def best_cutoff_sum (cutoff, elements):
elements = sorted(elements)
sums = {0: None}
for e in elements:
next_sums = {}
for v, path in sums.iteritems():
next_sums[v] = path
if v < cutoff:
next_sums[v + e] = [e, path]
sums = next_sums
best = max(sums.keys())
return (best, sums[best])
print(best_cutoff_sum(15, [6, 5, 4, 4, 4, 3, 2, 2, 1]))
With a little work you can turn the path from the nested array it currently is to whatever format you want.
If your list of non-negative elements has n
elements, your cutoff is c
and your maximum value is v
, then this algorithm will take time O(n * (k + v))
Upvotes: 1