Reputation: 10582
I get a big array (image with 12 Mpix) in the array format from the python standard lib. Since I want to perform operations on those array, I wish to convert it to a numpy array. I tried the following:
import numpy
import array
from datetime import datetime
test = array.array('d', [0]*12000000)
t = datetime.now()
numpy.array(test)
print datetime.now() - t
I get a result between one or two seconds: equivalent to a loop in python.
Is there a more efficient way of doing this conversion?
Upvotes: 32
Views: 63544
Reputation: 97565
asarray(x)
is almost always the best choice for any array-like object.
array
and fromiter
are slow because they perform a copy. Using asarray
allows this copy to be elided:
>>> import array
>>> import numpy as np
>>> test = array.array('d', [0]*12000000)
# very slow - this makes multiple copies that grow each time
>>> %timeit np.fromiter(test, dtype=test.typecode)
626 ms ± 3.97 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# fast memory copy
>>> %timeit np.array(test)
63.5 ms ± 639 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
# which is equivalent to doing the fast construction followed by a copy
>>> %timeit np.asarray(test).copy()
63.4 ms ± 371 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
# so doing just the construction is way faster
>>> %timeit np.asarray(test)
1.73 µs ± 70.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
# marginally faster, but at the expense of verbosity and type safety if you
# get the wrong type
>>> %timeit np.frombuffer(test, dtype=test.typecode)
1.07 µs ± 27.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
Upvotes: 5
Reputation: 212825
np.array(test) # 1.19s
np.fromiter(test, dtype=int) # 1.08s
np.frombuffer(test) # 459ns !!!
Upvotes: 64