Reputation: 1971
I have a dataframe like this:
df_1 = pd.DataFrame({
'ID' : ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C'],
'VAL' : ['shoes', 'flowers', 'chairs', 'apples', 'dice', 'shoes', 'apples',
'curtain', 'sand', 'socks', 'necklacs', 'tables', 'dishes', 'apples'],
'SEQ' : [0, 1, 2, 3, 4, 0, 1, 2, 3, 0, 1, 2, 3, 4]
})
ID VAL SEQ
0 A shoes 0
1 A flowers 1
2 A chairs 2
3 A apples 3
4 A dice 4
5 B shoes 0
6 B apples 1
7 B curtain 2
8 B sand 3
9 C socks 0
10 C necklacs 1
11 C tables 2
12 C dishes 3
13 C apples 4
I want to slice rows that until a value, for example, slice all rows from each ID
group that until apple
:
Out[110]:
ID VAL SEQ
0 A shoes 0
1 A flowers 1
2 A chairs 2
3 A apples 3
4 B shoes 0
5 B apples 1
6 C socks 0
7 C necklacs 1
8 C tables 2
9 C dishes 3
10 C apples 4
Upvotes: 2
Views: 145
Reputation: 402593
GroupBy.cumsum
is your friend:
mask = (df_1['VAL'].eq('apples')
.shift()
.astype(float)
.groupby(df_1['ID'])
.cumsum()
.lt(1))
df_1[mask]
ID VAL SEQ
1 A flowers 1
2 A chairs 2
3 A apples 3
5 B shoes 0
6 B apples 1
9 C socks 0
10 C necklacs 1
11 C tables 2
12 C dishes 3
13 C apples 4
If it is possible an ID ends with the term you're looking for, the shift
solution above (while convenient) will be inappropriate. Use GroupBy.apply
with cumsum
instead:
mask = (df_1['VAL'].eq('apples')
.groupby(df_1['ID'])
.apply(lambda x: x.shift().fillna(0).cumsum())
.lt(1))
df_1[mask]
ID VAL SEQ
1 A flowers 1
2 A chairs 2
3 A apples 3
5 B shoes 0
6 B apples 1
9 C socks 0
10 C necklacs 1
11 C tables 2
12 C dishes 3
13 C apples 4
Upvotes: 4
Reputation: 323306
I am using transform
df_1[df_1.index<=df_1.VAL.eq('apples').groupby(df_1['ID']).transform('idxmax')]
Out[856]:
ID VAL SEQ
0 A shoes 0
1 A flowers 1
2 A chairs 2
3 A apples 3
5 B shoes 0
6 B apples 1
9 C socks 0
10 C necklacs 1
11 C tables 2
12 C dishes 3
13 C apples 4
Upvotes: 2
Reputation: 294338
idxmax
, groupby
, concat
pd.concat([
d.loc[:d.VAL.eq('apples').idxmax()]
for _, d in df_1.groupby('ID')
])
ID VAL SEQ
0 A shoes 0
1 A flowers 1
2 A chairs 2
3 A apples 3
5 B shoes 0
6 B apples 1
9 C socks 0
10 C necklacs 1
11 C tables 2
12 C dishes 3
13 C apples 4
Upvotes: 5