Reputation: 305
I have a Numpy array that looks like
array([1, 2, 3, 4, 5, 6, 7, 8])
and I want to reshape it to an array
array([[5, 0, 0, 6],
[0, 1, 2, 0],
[0, 3, 4, 0],
[7, 0, 0, 8]])
More specifically, I'm trying to reshape a 2D numpy array to get a 3D Numpy array to go from
array([[ 1, 2, 3, 4, 5, 6, 7, 8],
[ 9, 10, 11, 12, 13, 14, 15, 16],
[17, 18, 19, 20, 21, 22, 23, 24],
...
[ 9, 10, 11, 12, 13, 14, 15, 16],
[89, 90, 91, 92, 93, 94, 95, 96]])
to a numpy array that looks like
array([[[ 5, 0, 0, 6],
[ 0, 1, 2, 0],
[ 0, 3, 4, 0],
[ 7, 0, 0, 8]],
[[13, 0, 0, 14],
[ 0, 9, 10, 0],
[ 0, 11, 12, 0],
[15, 0, 0, 16]],
...
[[93, 0, 0, 94],
[ 0, 89, 90, 0],
[ 0, 91, 92, 0],
[95, 0, 0, 96]]])
Is there an efficient way to do this using numpy functionality, particularly vectorized?
Upvotes: 3
Views: 418
Reputation: 221614
We can make use of slicing
-
def expand(a): # a is 2D array
out = np.zeros((len(a),4,4),dtype=a.dtype)
out[:,1:3,1:3] = a[:,:4].reshape(-1,2,2)
out[:,::3,::3] = a[:,4:].reshape(-1,2,2)
return out
The benefit is memory and hence perf. efficiency, as only the output would occupy memory space. The steps involved work with views thanks to the slicing on the input and output.
Sample run -
2D input :
In [223]: a
Out[223]:
array([[ 1, 2, 3, 4, 5, 6, 7, 8],
[ 9, 10, 11, 12, 13, 14, 15, 16]])
In [224]: expand(a)
Out[224]:
array([[[ 5, 0, 0, 6],
[ 0, 1, 2, 0],
[ 0, 3, 4, 0],
[ 7, 0, 0, 8]],
[[13, 0, 0, 14],
[ 0, 9, 10, 0],
[ 0, 11, 12, 0],
[15, 0, 0, 16]]])
1D input (feed in 2D extended input with None
) :
In [225]: a = np.array([1, 2, 3, 4, 5, 6, 7, 8])
In [226]: expand(a[None])
Out[226]:
array([[[5, 0, 0, 6],
[0, 1, 2, 0],
[0, 3, 4, 0],
[7, 0, 0, 8]]])
Upvotes: 4