Reputation: 1
I want to sum over a range (Areas) except if j is not equal to k. Can anybody help me?
I tried:
forall( k in Areas )
sum ( j in Areas: j!=k ) X[k][j] == 1;
Also tried:
forall( k in Areas )
sum ( j in Areas) (j!=k)*X[k][j] == 1;
int NbAreas = 5;
range Areas = 1..NbAreas;
float P[Areas] = [0, 0.3, 0.65, 0.2, 0.1];
float D[Areas] = [0, 7, 5, 3, 9];
float FROMTO[Areas][Areas] = [
[0, 2, 5, 1, 3],
[2, 0, 4, 3, 8],
[5, 4, 0, 6, 2],
[1, 3, 6, 0, 7],
[3, 8, 2, 7, 0]];
dvar int Y[Areas];
dvar int T[Areas];
dvar int X[Areas][Areas] in 0..1;
maximize sum( i in Areas ) P[i] * Y[i];
subject to {
forall( k in Areas )
sum ( j in Areas: j!=k) X[k][j] == 1;
forall( k in Areas)
sum ( i in Areas: i!=k) X[i][k] == 1;
forall( i in Areas) forall (j in Areas) T[i] + FROMTO[i][j] - T[j] - 100*(1-X[i][j]) <= 0;
T[1] == 0;
forall( i in Areas: i!=1) T[i] - D[i] - 1000*(1-Y[i]) <= 0;
}
Upvotes: 0
Views: 144
Reputation: 10059
You wrote "except if j is not equal to k".
So instead of
forall( k in Areas)
sum ( i in Areas: i!=k) X[i][k] == 1;
I would write
forall( k in Areas)
sum ( i in Areas: i==k) X[i][k] == 1;
Upvotes: 0
Reputation: 5930
I take it you meant
I want to sum over a range (Areas) except if j is equal (instead of "not equal") to k.
I also assume that your issue is that the model you posted is infeasible. You should label your constraints so that the conflict refiner can run and then look at the results of the conflict refiner. If I label your constraints like so:
maximize sum( i in Areas ) P[i] * Y[i];
subject to {
forall( k in Areas )
sum1: sum ( j in Areas: j!=k) X[k][j] == 1;
forall( k in Areas)
sum2: sum ( i in Areas: i!=k) X[i][k] == 1;
forall( i in Areas) forall (j in Areas)
fromto: T[i] + FROMTO[i][j] - T[j] - 100*(1-X[i][j]) <= 0;
T[1] == 0;
forall( i in Areas: i!=1)
limit: T[i] - D[i] - 1000*(1-Y[i]) <= 0;
Then I get this conflict:
sum1(1): X(1)(2) + X(1)(3) + X(1)(4) + X(1)(5) = 1
sum1(2): X(2)(1) + X(2)(3) + X(2)(4) + X(2)(5) = 1
sum1(3): X(3)(1) + X(3)(2) + X(3)(4) + X(3)(5) = 1
sum1(4): X(4)(1) + X(4)(2) + X(4)(3) + X(4)(5) = 1
sum1(5): X(5)(1) + X(5)(2) + X(5)(3) + X(5)(4) = 1
fromto(1)(2): 100 X(1)(2) + T(1) - T(2) <= 98
fromto(1)(3): 100 X(1)(3) + T(1) - T(3) <= 95
fromto(1)(4): 100 X(1)(4) + T(1) - T(4) <= 99
fromto(1)(5): 100 X(1)(5) + T(1) - T(5) <= 97
fromto(2)(1): 100 X(2)(1) - T(1) + T(2) <= 98
fromto(2)(3): 100 X(2)(3) + T(2) - T(3) <= 96
fromto(2)(4): 100 X(2)(4) + T(2) - T(4) <= 97
fromto(2)(5): 100 X(2)(5) + T(2) - T(5) <= 92
fromto(3)(1): 100 X(3)(1) - T(1) + T(3) <= 95
fromto(3)(2): 100 X(3)(2) - T(2) + T(3) <= 96
fromto(3)(4): 100 X(3)(4) + T(3) - T(4) <= 94
fromto(3)(5): 100 X(3)(5) + T(3) - T(5) <= 98
fromto(4)(1): 100 X(4)(1) - T(1) + T(4) <= 99
fromto(4)(2): 100 X(4)(2) - T(2) + T(4) <= 97
fromto(4)(3): 100 X(4)(3) - T(3) + T(4) <= 94
fromto(4)(5): 100 X(4)(5) + T(4) - T(5) <= 93
fromto(5)(1): 100 X(5)(1) - T(1) + T(5) <= 97
fromto(5)(2): 100 X(5)(2) - T(2) + T(5) <= 92
fromto(5)(3): 100 X(5)(3) - T(3) + T(5) <= 98
fromto(5)(4): 100 X(5)(4) - T(4) + T(5) <= 93
So it seems your data in FROMTO
and T
does not allow a feasible solution.
Upvotes: 1