Reputation: 960
This question is about a specific data.table operation.
I have:
dataDT <- data.table(ID = c(1:3))
dataDT
> dataDT
ID
1: 1
2: 2
3: 3
I want to create three new columns to store data from 3 different sources.
targetDT <- data.table(ID = c(1:3), ID1 = c(1:3), ID2 = c(1:3), ID3 = c(1:3))
targetDT
> targetDT
ID ID1 ID2 ID3
1: 1 1 1 1
2: 2 2 2 2
3: 3 3 3 3
So I've tried:
tempDT_1 <- data.table(ID1 = c(1:3)) # create dummy source 1
tempDT_2 <- data.table(ID2 = c(1:3)) # create dummy source 2
tempDT_3 <- data.table(ID3 = c(1:3)) # create dummy source 3
dataDT[, c("A", "B", "c") := list(tempDT_1, tempDT_2, tempDT_3)]
dataDT
> dataDT
ID A B c
1: 1 1,2,3 1,2,3 1,2,3
2: 2 1,2,3 1,2,3 1,2,3
3: 3 1,2,3 1,2,3 1,2,3
Why the above list(tempDT_1, tempDT_2, tempDT_3)
"not working properly"?
I have seen people do things like:
dataDT[, c("A", "B", "c") := list(sum(ID), mean(ID), func(ID))]
that uses list()
to "cbind" new values.
How should I fix my codes?
Upvotes: 1
Views: 59
Reputation: 887118
If we need to make replicates, an option is replicate
setDT(data.frame(replicate(4, dataDT)))[]
# ID ID.1 ID.2 ID.3
#1: 1 1 1 1
#2: 2 2 2 2
#3: 3 3 3 3
Or use assign (:=
)
dataDT[, paste0('ID', 1:3) := ID][]
Upvotes: 1
Reputation: 323226
Since
class(tempDT_1 )
[1] "data.table" "data.frame"
In your case to match the output we should using cbind
cbind(dataDT, tempDT_1, tempDT_2, tempDT_3)
ID ID1 ID2 ID3
1: 1 1 1 1
2: 2 2 2 2
3: 3 3 3 3
Upvotes: 1