Tung
Tung

Reputation: 28381

Automatic way to highlight parts of a time series plot that have values higher than a certain threshold?

I'm looking for an automatic way of highlighting some portions of the plot that have Station2 values greater than a pre-defined threshold which is 0 in this case. I can do it manually by specify the Date in a data frame (dateRanges) after inspecting the plot.

Thanks in advance for any suggestion!

library(ggplot2)

# sample data
df <- structure(list(Date = structure(c(15355L, 15356L, 15357L, 15358L, 
                15359L, 15360L, 15361L, 15362L, 15363L, 15364L, 15365L, 15366L, 
                15367L, 15368L, 15369L, 15370L, 15371L, 15372L, 15373L, 15374L, 
                15375L, 15376L, 15377L, 15378L, 15379L, 15380L, 15381L, 15382L, 
                15383L, 15384L, 15385L, 15386L, 15387L, 15388L, 15389L, 15390L, 
                15391L, 15392L, 15393L, 15394L, 15355L, 15356L, 15357L, 15358L, 
                15359L, 15360L, 15361L, 15362L, 15363L, 15364L, 15365L, 15366L, 
                15367L, 15368L, 15369L, 15370L, 15371L, 15372L, 15373L, 15374L, 
                15375L, 15376L, 15377L, 15378L, 15379L, 15380L, 15381L, 15382L, 
                15383L, 15384L, 15385L, 15386L, 15387L, 15388L, 15389L, 15390L, 
                15391L, 15392L, 15393L, 15394L, 15355L, 15356L, 15357L, 15358L, 
                15359L, 15360L, 15361L, 15362L, 15363L, 15364L, 15365L, 15366L, 
                15367L, 15368L, 15369L, 15370L, 15371L, 15372L, 15373L, 15374L, 
                15375L, 15376L, 15377L, 15378L, 15379L, 15380L, 15381L, 15382L, 
                15383L, 15384L, 15385L, 15386L, 15387L, 15388L, 15389L, 15390L, 
                15391L, 15392L, 15393L, 15394L), class = "Date"), key = structure(c(1L, 
                1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
                2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 
                1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
                2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
                2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
                3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("Station1", "Station2", 
                "Temp."), class = "factor"), value = c(5277.9, 5254.8, 5207.1, 
                5177.9, 5594.7, 11665.7, 11630.8, 13472.8, 12738.1, 7970.3, 6750.3, 
                7147.2, 7013.5, 6280.1, 5879.4, 5695.1, 5570.4, 5412.1, 5199.2, 
                5007.9, 0, 0, 0, 0, 0, 0, 1600, 2100, 2100, 1199.2, 1017.6, 1076.5, 
                1054.9, 944.2, 589.2, 570.7, 558.1, 542.2, 0, 0, 46.6, 45.7, 
                46, 46.8, 46.8, 45, 45.1, 44.4, 46, 48, 49.5, 48.7, 47.3, 47.5, 
                48.6, 48.6, 49.3, 49.5, 48.6, 48.4, 5006.3, 5009.7, 5220.5, 7541.8, 
                11472.3, 12755, 13028.2, 11015.3, 7998.4, 6624, 6065.7, 5804.3, 
                6852.9, 7067.6, 7103.7, 7896.9, 7805.5, 15946.9, 17949.6, 13339.1, 
                0, 0, 0, 0, 2100, 2100, 2100, 2100, 1604.5, 996.5, 912.5, 582.3, 
                1030.7, 1063.1, 1070.2, 1188.8, 1622.6, 2100, 2100, 0, 51.8, 
                50.9, 50.2, 50.5, 51.6, 52, 50.5, 50.4, 49.6, 48.9, 50.2, 51.1, 
                51.1, 50.5, 49.5, 49.8, 49.5, 49.5, 51.6, 51.1), grp = c("Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Temp. (F)", 
                "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", 
                "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", 
                "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", 
                "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", 
                "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Flow (cfs)", "Temp. (F)", 
                "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", 
                "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", 
                "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)", 
                "Temp. (F)", "Temp. (F)", "Temp. (F)", "Temp. (F)")), class = c("tbl_df", 
                "tbl", "data.frame"), row.names = c(NA, -120L))

head(df)
#> # A tibble: 6 x 4
#>   Date       key       value grp       
#>   <date>     <fct>     <dbl> <chr>     
#> 1 2012-01-16 Station1  5278. Flow (cfs)
#> 2 2012-01-17 Station1  5255. Flow (cfs)
#> 3 2012-01-18 Station1  5207. Flow (cfs)
#> 4 2012-01-19 Station1  5178. Flow (cfs)
#> 5 2012-01-20 Station1  5595. Flow (cfs)
#> 6 2012-01-21 Station1 11666. Flow (cfs)

# base plot
gg1 <- ggplot(df, aes(Date, value)) +
  geom_line(aes(group = key, color = key), size = 1) +
  facet_grid(grp ~ ., switch = 'y', scales = 'free_y') +
  scale_color_brewer("", palette = "Dark2") +
  scale_x_date(date_breaks = "1 week", date_labels = "%d-%b") +
  labs(x = "", y = "") +
  theme_bw(base_size = 16) +
  theme(strip.placement = 'outside') +
  theme(legend.position = 'bottom') +
  theme(strip.background.y = element_blank()) +
  NULL

# define and plot the highlight period manually
dateRanges <- data.frame(
  from = as.Date(c("2012-01-20", "2012-02-11")),
  to = as.Date(c("2012-02-04", "2012-02-23"))
)

gg2 <- gg1 +
  geom_rect(data = dateRanges, 
            aes(xmin = from - 1, xmax = to, ymin = -Inf, ymax = Inf), 
            inherit.aes = FALSE,
            color = 'grey90',
            alpha = 0.2)
gg2

Created on 2019-06-28 by the reprex package (v0.3.0)

Upvotes: 1

Views: 980

Answers (2)

Jon Spring
Jon Spring

Reputation: 66500

Here's a way using dplyr and tidyr from the tidyverse meta-package to create one rect per positive range of Station2 Flow:

First I isolate Station2's Flow rows, then filter for the zeros before or after positive values, then gather and spread to create a start and end for each contiguous section:

library(tidyverse)
dateRanges <- df %>%
  filter(key == "Station2", grp == "Flow (cfs)") %>%
  mutate(from = value == 0 & lead(value, default = -1) > 0,
         to   = value == 0 &  lag(value, default = -1) > 0,
         highlight_num = cumsum(from)) %>% 
  gather(type, val, from:to) %>%
  filter(val) %>%
  select(type, Date, highlight_num) %>%
  spread(type, Date)

> dateRanges
# A tibble: 2 x 3
  highlight_num from       to        
          <int> <date>     <date>    
1             1 2012-02-10 2012-02-23
2             2 2012-01-19 2012-02-04

Note, my range specifications are a bit different here, since it looks like your ranges start from the first positive value but continue to the zero following a positive range. For my code, you'd plot:

...
geom_rect(data = dateRanges, 
            aes(xmin = from, xmax = to, ymin = -Inf, ymax = Inf),
...

Edit #2:

The original poster provided a larger sample of data that exposed two edge cases I hadn't considered. 1) NA's in value; easy to filter for. 2) occasions where a single day goes to zero, thus being both the start and end of a range. One approach to deal with this is to define the start and end as the first and last positive values. The code below seemed to work on the larger data.

dateRanges <- df %>%
  filter(!is.na(value)) %>%
  filter(key == "Station2", grp == "Flow (cfs)") %>%
  mutate(positive = value > 0,
         border   = positive != lag(positive, default = TRUE),
         from     = border & positive,
         to       = border & !positive,
         highlight_num = cumsum(from)) %>%
  gather(type, val, from:to) %>% 
  filter(val) %>% 
  select(type, Date, highlight_num) %>%
  spread(type, Date) %>%
  filter(!is.na(from), !is.na(to))

enter image description here

Upvotes: 3

Axeman
Axeman

Reputation: 35307

Something like:

library(dplyr)
dateRanges <- df %>% 
  mutate(Date2 = lead(Date)) %>% 
  filter(key == 'Station2', value > 0 | lead(value) > 0, Date2 - Date == 1)

gg1 +
  geom_rect(data = dateRanges, 
            aes(xmin = Date, xmax = Date2, ymin = -Inf, ymax = Inf), 
            inherit.aes = FALSE,
            color = NA,
            fill = 'grey20',
            alpha = 0.2)

It's easiest to just draw one rect for per day.

Upvotes: 1

Related Questions