Reputation: 147
I'm making a graph of the expression of multiple genes among multiple subjects, displaying the data points and smoothed conditional means with the respective confidence intervals, but the points and lines are obscured by the fill of the confidence intervals. Is there a way to put the points and lines back on the first plane or make the confidence interval fill lighter, to make the points and lines more visible?
library(forcats)
library(ggplot2)
library(tidyr)
tbl_long <- data1 %>%
gather(gene, expression, -X)
tbl_long %>%
ggplot(aes(x = fct_inorder(X), y = expression, color = gene, group = gene)) +
geom_point() +
geom_smooth(aes(fill=gene)) +
theme_classic()
I`m a begginer R user, so any help would be much appreciated
Upvotes: 1
Views: 3256
Reputation: 8686
library(dplyr)
library(forcats)
library(ggplot2)
library(readr)
library(tidyr)
"X,ALDOA,ALDOC,GPI,GAPDHS,LDHA,PGK1,PKLR
C1,-0.643185598,-0.645053078,-0.087097464,-0.343085671,-0.770712771,0.004189881,0.088937264
C2,-0.167424935,-0.414607255,0.049551335,-0.405339423,-0.182211808,-0.127414498,-0.313125427
C3,-0.81858642,-0.938110755,-1.141371324,-0.212165875,-0.582733509,-0.299505078,-0.417053296
C4,-0.83403929,-0.36359332,-0.731276681,-1.173581357,-0.42953985,-0.14434282,-0.861271021
C5,-0.689384044,-0.833311409,-0.622961915,-1.13983245,0.479864518,-0.353765462,-0.787467172
C6,-0.465153207,-0.740128773,-0.05430084,0.499455778,-0.692945684,-0.215067456,-0.460695935
S2,0.099525323,0.327565645,-0.315537278,0.065457821,0.78394394,0.189251447,0.11684847
S3,0.33216583,0.190001824,0.749459725,0.224739679,-0.138610536,-0.420150288,0.919318891
S4,0.522281547,0.278411886,1.715325626,0.534957031,1.130054777,-0.129296273,1.803756399
S5,0.691225088,0.665540011,1.661124529,0.662320212,0.267803229,0.853683613,1.105808889
S6,1.269616976,1.86390714,2.069219749,1.312324149,1.498836807,1.794147633,0.842335285
S7,1.254166133,1.819075004,0.44893804,0.438435159,0.482694339,0.446939822,0.802671992
S8,0.751743085,0.702057721,0.657752337,1.668582798,-0.186354601,1.214976683,0.287904556
S9,0.091028475,-0.214746307,0.037471169,-0.90747123,-0.172209571,0.062382102,0.136354703
S10,1.5792826,1.736452158,0.194961866,0.706323594,1.396245579,0.208168636,0.883114282
R2,-0.36289097,-0.252649755,0.026497148,-0.026676693,-0.720750516,-0.087657548,0.390400605
R3,0.106992251,0.290831853,-0.815393104,-0.020562949,-0.579128953,-0.222087138,0.603723294
R4,0.208230649,0.533552023,-0.116632671,1.126588341,-0.09646495,0.157577458,-0.402493353
R5,-0.10781116,0.436174594,-0.969979695,-1.298192703,0.541570124,-0.07591813,-0.704663307
R6,-0.282867322,-0.960902616,0.184185506,-1.215118472,0.856165556,-0.256458847,-1.528611038
R7,-0.300331377,-0.918484952,0.191947526,-0.895049036,1.200294702,0.7120941,-0.047383224
R8,0.278804568,-0.07335879,0.300083636,0.37631121,-0.288228181,0.427576413,0.631281194
R9,0.393632652,0.228379711,-0.201269856,1.731887958,0.141541807,0.242716283,0.154875397
R10,0.731821818,0.058779515,-0.310899832,0.578285435,-0.474621274,0.126920851,0.017104493" %>%
read_csv() -> tbl_wide
tbl_long <- tbl_wide %>%
gather(gene, expression, -X)
tbl_long %>%
ggplot(aes(x = fct_inorder(X), y = expression, color = gene, fill = gene, group = gene)) +
geom_smooth(method = "loess", alpha = 0.1) +
geom_point() +
labs(x = "Location",
y = "Expression",
color = "Gene",
fill = "Gene") +
theme_classic()
Upvotes: 2