Reputation: 941
I am interested to pick up top 10 PCA components from accumulative PCA plot for my dataset. I managed to get PCA plot such as scree plot, pairs plot and so on, but it doesn't make much sense to me. So I want to select top 10 PCA plot from its accumulative PCA plot and I did it, but I need to subset my original dataset by using this top 10 PCA component. Can anyone point me out to how to make attempt more accurate and desirable?
reproducible data:
persons_df <- data.frame(person1=sample(1:200,20, replace = FALSE),
person2=as.factor(sample(20)),
person3=sample(1:250,20, replace = FALSE),
person4=sample(1:300,20, replace = FALSE),
person5=as.factor(sample(20)),
person6=as.factor(sample(20)))
row.names(persons_df) <-letters[1:20]
my attempt:
my_pca <- prcomp(t(persons_df), center=TRUE, scale=FALSE)
summary(my_pca)
my_pca_proportionvariances <- cumsum(((my_pca$sdev^2) / (sum(my_pca$sdev^2)))*100)
public dataset:
since I have some issue when I created above reproducible data, here I linked public example dataset
here I need to select top 10 PCA component for persons_df
, then subset original data then run a simple linear regression on that. How can I make my approach complete here in order to achieve my goal? Can anyone quickly point me out here? any idea?
Upvotes: 1
Views: 2449
Reputation: 43334
To use PCA for dimensionality reduction, in brief:
model.matrix
if necessary. (Don't directly one-hot encode factors with lots of levels like zip code, or the size of your data will explode. Think smarter.) Remove any zero-variance variables. Deal with NA
s.princomp
or prcomp
.pca <- princomp(scale(cbind(mtcars[-1])))
stdev
vector out of the PCA object, square it to get variance, and scale by the sum so it sums to 1.pct_var_explained <- pca$sdev^2 / sum(pca$sdev^2)
pct_var_explained
#> Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
#> 0.576021744 0.264964319 0.059721486 0.026950667 0.022225006 0.021011744
#> Comp.7 Comp.8 Comp.9 Comp.10
#> 0.013292009 0.008068158 0.005365235 0.002379633
summary
to do these calculations for you.cumsum(pct_var_explained)
#> Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
#> 0.5760217 0.8409861 0.9007075 0.9276582 0.9498832 0.9708950 0.9841870
#> Comp.8 Comp.9 Comp.10
#> 0.9922551 0.9976204 1.0000000
summary(pca)
#> Importance of components:
#> Comp.1 Comp.2 Comp.3 Comp.4
#> Standard deviation 2.3622469 1.6021366 0.76062599 0.51096437
#> Proportion of Variance 0.5760217 0.2649643 0.05972149 0.02695067
#> Cumulative Proportion 0.5760217 0.8409861 0.90070755 0.92765822
#> Comp.5 Comp.6 Comp.7 Comp.8
#> Standard deviation 0.46400943 0.45116656 0.35884027 0.279571602
#> Proportion of Variance 0.02222501 0.02101174 0.01329201 0.008068158
#> Cumulative Proportion 0.94988322 0.97089497 0.98418697 0.992255132
#> Comp.9 Comp.10
#> Standard deviation 0.227981824 0.151831138
#> Proportion of Variance 0.005365235 0.002379633
#> Cumulative Proportion 0.997620367 1.000000000
train <- data.frame(
mpg = mtcars$mpg,
predict(pca)[, cumsum(pct_var_explained) < 0.95]
)
model <- lm(mpg ~ ., train)
summary(model)
#>
#> Call:
#> lm(formula = mpg ~ ., data = train)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -4.2581 -1.2933 -0.4999 1.3939 5.2861
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 20.09062 0.44345 45.305 < 2e-16 ***
#> Comp.1 -2.28131 0.18772 -12.153 3.17e-12 ***
#> Comp.2 0.11632 0.27679 0.420 0.6778
#> Comp.3 1.29925 0.58301 2.229 0.0347 *
#> Comp.4 -0.09002 0.86787 -0.104 0.9182
#> Comp.5 0.31279 0.95569 0.327 0.7461
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.509 on 26 degrees of freedom
#> Multiple R-squared: 0.8547, Adjusted R-squared: 0.8268
#> F-statistic: 30.59 on 5 and 26 DF, p-value: 4.186e-10
This particular model pretty much just needs 1 principal component—there's a lot of information the model can't do anything with in there. (Maybe it's irrelevant, redundant, or nonlinear.) Iterate.
Upvotes: 5