Reputation:
races = pd.read_csv("C:/Users/Sam/Documents/races.csv")
df_races = pd.DataFrame(races)
df_races = df_races[["raceId", "year", "name"]]
df_races = df_races.sort_values(by=['year'])
df_races = df_races[df_races['name'] == 'Australian Grand Prix']
# Australian Grand Prix 'Find Qualifying Data'
QLF = pd.read_csv("C:/Users/Sam/Documents/qualifying.csv")
df_QLF = pd.DataFrame(QLF)
df_QLF = df_QLF[["raceId", "position", "q1", "q2", "q3"]]
Race_Id_1 = df_races['raceId'].tolist()
# Filter Rows
df_QLF['Match'] = df_QLF["raceId"].isin(Race_Id_1)
def Find_Rid(row):
if row['Match'] == 'True':
return row
df_QLF = df_QLF.apply(Find_Rid, axis=1)
print(df_QLF)
Once I run this all I get the following output, when actually all I want is when df_QLF['Match'] column == 'True' to keep these rows and discard all of the others
0 None
1 None
2 None
3 None
.... ....
I don't understand why.
Upvotes: 1
Views: 52
Reputation: 58
Following code worked for me. In python, True
and False
are specially reserved constants for bool class. Reference: 1) https://docs.python.org/2.3/whatsnew/section-bool.html
2) https://www.geeksforgeeks.org/bool-in-python/
def Find_Rid(row):
if row['Match'] == True:
return row
df_QLF_true = df_QLF.apply(Find_Rid, axis=1)
print(df_QLF_true)
Upvotes: 0