Michail N
Michail N

Reputation: 3855

Apply changes consecutively in a spark dataframe

I have a dataframe with an initial status named init. I have a dataframe with the same schema where it has updates for one field of dataframe init per row and Null in other fields. How can I reconstruct each record applying the changes consecutively? To be more clear lets have this example:

listOfTuples = [(101, "Status_0", '2019','value_col_4',0)]
init = spark.createDataFrame(listOfTuples , ["id", "status", "year","col_4","ord"])

#initial state
>>> init.show()
+---+--------+----+-----------+---+
| id|  status|year|      col_4|ord|
+---+--------+----+-----------+---+
|  1|Status_0|2019|value_col_4|  0|
+---+--------+----+-----------+---+

#dataframe with changes
schema = StructType([StructField('id', StringType(), True),
                     StructField('status', StringType(), True),
                     StructField('year', StringType(), True),
                     StructField('col_4', StringType(), True),
                     StructField('ord', IntegerType(), True)])

listOfTuples = [(1, "Status_A", None, None,1),
                (1, "Status_B", None, None,2),
                (1, None, None, "new_val", 3),
                (1, "Status_C", None, None,4)]


changes = spark.createDataFrame(listOfTuples ,  schema)
>>> changes.show()
+---+--------+----+-------+---+
| id|  status|year|  col_4|ord|
+---+--------+----+-------+---+
|  1|Status_A|null|   null|  1|
|  1|Status_B|null|   null|  2|
|  1|    null|null|new_val|  3|
|  1|Status_C|null|   null|  4|
+---+--------+----+-------+---+

I want the changes to be applied in final dataframe consecutively with the order of ord column and baseline the values in dataframe init. So I want my final dataframe to be like:

>>> final.show()
+---+--------+----+--------------+
| id|  status|year|  col_4       |
+---+--------+----+--------------+
|  1|Status_0|2019|  value_col_4 |
|  1|Status_A|2019|  value_col_4 |
|  1|Status_B|2019|  value_col_4 |
|  1|Status_B|2019|  new_val     |
|  1|Status_C|2019|  new_val     |
+---+--------+----+--------------+

I was thinking about unioning the two dataframes sort by ord column and then propagate changes somehow below. Has anyone any idea how to do this?

Upvotes: 0

Views: 707

Answers (2)

Michail N
Michail N

Reputation: 3855

In python using the code from @C.S.Reddy Gadipally

import pyspark.sql.functions as f
from pyspark.sql.window import Window

f = init.union(changes)

w = Window.partitionBy(f['id']).orderBy(f['ord'])

for c in f.columns[1:]:
    f = f.withColumn(c,func.last(c,True).over(w))

Upvotes: 2

C.S.Reddy Gadipally
C.S.Reddy Gadipally

Reputation: 1758

It is Scala code, but I hope this helps. You may drop or rename the columns in the end. Solution is to do a union and then get the org.apache.spark.sql.functions.last not null value with in a frame of unboundedpreceding rows to currentrow for all the 3 columns.

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.expressions.WindowSpec
import org.apache.spark.sql.functions._

scala> initial.show
+---+--------+----+-----------+---+
| id|  status|year|      col_4|ord|
+---+--------+----+-----------+---+
|  1|Status_0|2019|value_col_4|  0|
+---+--------+----+-----------+---+

scala> changes.show
+---+--------+----+-------+---+
| id|  status|year|  col_4|ord|
+---+--------+----+-------+---+
|  1|Status_A|null|   null|  1|
|  1|Status_B|null|   null|  2|
|  1|    null|null|new_val|  3|
|  1|Status_C|null|   null|  4|
+---+--------+----+-------+---+


scala> val inter = initial.union(changes)
inter: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [id: string, status: string ... 3 more fields]

scala> inter.show
+---+--------+----+-----------+---+
| id|  status|year|      col_4|ord|
+---+--------+----+-----------+---+
|  1|Status_0|2019|value_col_4|  0|
|  1|Status_A|null|       null|  1|
|  1|Status_B|null|       null|  2|
|  1|    null|null|    new_val|  3|
|  1|Status_C|null|       null|  4|
+---+--------+----+-----------+---+


scala> val overColumns = Window.partitionBy("id").orderBy("ord").rowsBetween(Window.unboundedPreceding, Window.currentRow)
overColumns: org.apache.spark.sql.expressions.WindowSpec = org.apache.spark.sql.expressions.WindowSpec@70f4b378

scala> val output = inter.withColumn("newstatus", 
  last("status", true).over(overColumns)).withColumn("newyear",
  last("year", true).over(overColumns)).withColumn("newcol_4", 
  last("col_4", true).over(overColumns))
output: org.apache.spark.sql.DataFrame = [id: string, status: string ... 6 more fields]

scala> output.show(false)
+---+--------+----+-----------+---+---------+-------+-----------+
|id |status  |year|col_4      |ord|newstatus|newyear|newcol_4   |
+---+--------+----+-----------+---+---------+-------+-----------+
|1  |Status_0|2019|value_col_4|0  |Status_0 |2019   |value_col_4|
|1  |Status_A|null|null       |1  |Status_A |2019   |value_col_4|
|1  |Status_B|null|null       |2  |Status_B |2019   |value_col_4|
|1  |null    |null|new_val    |3  |Status_B |2019   |new_val    |
|1  |Status_C|null|null       |4  |Status_C |2019   |new_val    |
+---+--------+----+-----------+---+---------+-------+-----------+

Upvotes: 2

Related Questions