Reputation: 147
Is there a way to map column values using a dictionary that does not include all columns. E.g:
Let's say my dataframe is:
A B C D E F
nan nan nan nan nan nan
and I have a dictionary which I would like to use as a mapper:
d = {'A': 1, 'B': 1, 'E': 1}
so the output should be replacing by 0 those values that are not in the dictionary
A B C D E F
1 1 0 0 1 0
Upvotes: 4
Views: 129
Reputation: 402844
The most idiomatic choice is with two fillna
calls,
df.fillna(d).fillna(0, downcast='infer')
df
A B C D E F
0 1 1 0 0 1 0
piRSquared suggests assign
as an alternative to the first fillna
call,
df.assign(**d).fillna(0, downcast='infer')
df
A B C D E F
0 1 1 0 0 1 0
Another option is to use Index.isin
on the columns. This is the single row form:
df[:] = [df.columns.isin(d.keys()).astype(int)]
To generalise to N rows, we use repeat
:
df[:] = df.columns.isin(d.keys()).astype(int)[None,:].repeat(len(df), axis=0)
df
A B C D E F
0 1 1 0 0 1 0
For fun, you can also use reindex
:
pd.DataFrame(d, index=df.index).reindex(df.columns, axis=1, fill_value=0)
A B C D E F
0 1 1 0 0 1 0
Upvotes: 3