Reputation: 37034
I have the following rabbitMq consumer:
Consumer consumer = new DefaultConsumer(channel) {
@Override
public void handleDelivery(String consumerTag, Envelope envelope, MQP.BasicProperties properties, byte[] body) throws IOException {
String message = new String(body, "UTF-8");
sendNotificationIntoTopic(message);
saveIntoDatabase(message);
}
};
Following situation can occur:
As a result we have data inconsistency.
Expected result either both action were successfully executed or both were not executed at all.
Any solutions how can I achieve it?
Currently I have following idea(please comment upon)
We can suppose that broker doesn't lose any messages.
We have to be subscribed on topic we want to send.
status
with value 'pending' status
with value 'success' We have to have a sheduled job which have to check rows with pending status. At the moment 2 cases are possible:
3.1 Notification wasn't send at all
3.2 Notification was send but save into database was failed(probability is very low but it is possible)
So we have to distinquish that 2 cases somehow: we may store messages from topic in the collection and job can check if the message was accepted or not. So if job found a message which corresponds the database row we have to update status to "success". Otherwise we have to remove entry from database.
I think my idea has some weaknesses(for example if we have multinode application we have to store messages in hazelcast(or analogs) but it is additional point of hypothetical failure)
Upvotes: 6
Views: 4463
Reputation: 473
If there is enough time to modify the design, it is recommended to use JTA like APIs to manage 2phase commit. Even weblogic and WebSphere support XA resource for 2 phase commit.
If timeline is less, it is suggested perform as below to reduce the failure gap.
Here failure will happen only when step 4 fails. It will result in same message send again. So receiving system will receive duplicate message. Each message has unique messageID and CorrelationID in JMS2.0 structure. So finding duplicate is bit straight forward (but this is to be handled at receiving system)
Both case will work for clustered environment as well.
Strict to your case, thought below steps might help to overcome your issue
Subscribe a listener listener-1 to your topic.
Process-1
Listener-1
Incase listener itself down, topic will have messages until listener reading the messages. Until then SENT messages will be in status 'to be sent'.
Upvotes: 0
Reputation: 9492
Here is an example of Try Cancel Confirm pattern https://servicecomb.apache.org/docs/distributed_saga_3/ that should be capable of dealing with your problem. You should tolerate some chance of double submission of the data via the queue. Here is an example:
6A. If you need to be 100% that the operation has completed you need a second queue where the recipient side will post a message ID - DONE. If such consistency is not necessary skip this step. Alternatively it can post ID -Failed reason for failure.
6B. The submitting side either waits for a message from 6A of completes the operation by writing status DONE to the database.
Notice that all this steps do not involve a technical transactions. You can do this with a non transactional database.
What I have written is a variation of the Try Cancel Confirm Pattern where each recipient of message should be aware of how to manage its own data.
Upvotes: 1
Reputation: 503
Here's the pseudocode for how i'd do it: (Assuming the dao layer has transactional capability and your messaging layer doesnt)
//Start a transaction
try {
String message = new String(body, "UTF-8");
// Ordering is important here as I'm assuming the database has commit and rollback capabilities, but the messaging system doesnt.
saveIntoDatabase(message);
sendNotificationIntoTopic(message);
} catch (MessageDeliveryException) {
// rollback the transaction
// Throw a domain specific exception
}
//commit the transaction
Scenarios:
1. If the database fails, the message wont be sent as the exception will break the code flow .
2. If the database call succeeds and the messaging system fails to deliver, catch the exception and rollback the database changes
All the actions necessary for logging and replaying the failures can be outside this method
Upvotes: 0
Reputation: 37034
If we failured on the step 1 - everything is ok - data in consistent state because job won't know anything about that data
if we failured on the step 2.1 - no problem, next job invocation will attempt to handle it
if we failured on the step 2.2 - If we failured here - it means that next job invocation will handle the same data again. From the first glance you can think that it is a problem. But your consumer has to be idempotent - it means that it has to understand that message was already processed and skip the processing. This requirement is a consequence that all message brokers have guarantees that message will be delivered AT LEAST ONCE. So our consumers have to be ready for duplicated messages anyway. No problem again.
Upvotes: 0