Reputation: 139
I created a simple linear learner model using sagemaker, and although I can deploy it on a test data set, I would like to be able to get the actual equation that the model uses to classify values (ie for linear regression the equation of the line).
Upvotes: 4
Views: 247
Reputation: 4047
You can open the model artifact with mxnet and view the weights and the bias - see code below, pasted from this forum post
import os
import mxnet as mx
import boto3
bucket = "<your_bucket"
key = "<your_model_prefix>"
boto3.resource('s3').Bucket(bucket).download_file(key, 'model.tar.gz')
os.system('tar -zxvf model.tar.gz')
# Linear learner model is itself a zip file, containing a mxnet model and other metadata.
# First unzip the model.
os.system('unzip model_algo-1')
# Load the mxnet module
mod = mx.module.Module.load("mx-mod", 0)
# model's weights
mod._arg_params['fc0_weight'].asnumpy().flatten()
# model bias
mod._arg_params['fc0_bias'].asnumpy().flatten()
Upvotes: 3