Reputation: 700
This is the error and data I entered into my model. I just can't figure out why it won't work since the dimensions are okay and it literally prints a list of arrays.
My Model + Code before:
import numpy as np
training = np.array(training)
training_inputs = list(training[:,0])
training_outputs = list(training[:,1])
print("train inputs ", training_inputs)
print("train outputs ", training_outputs)
# Now lets create our tensorflow model
# In[10]:
from tensorflow.python.keras import Sequential
from tensorflow.python.keras.layers import LSTM, Dense
model = Sequential()
model.add(Dense(training_inputs[0], activation='linear'))
model.add(Dense(15, activation='linear'))
model.add(Dense(15, activation='linear'))
model.add(Dense(15, activation='linear'))
model.add(Dense(len(training_outputs[0]), activation='softmax'))
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy', 'loss']
)
model.fit(x=training_inputs, y=training_outputs,
epochs=10000,
batch_size=20,
verbose=True,
shuffle=True)
model.save('models/basic_chat.json')
Upvotes: 1
Views: 1232
Reputation: 8277
You need an input layer to your model:
...
model = Sequential()
model.add(Dense(15, activation='linear', input_shape=( len(training_inputs[0]),)))
model.add(Dense(15, activation='linear'))
...
Upvotes: 1
Reputation: 131
training_inputs = np.array(training[:,0])
training_outputs = np.array(training[:,1])
Upvotes: 1