cs guy
cs guy

Reputation: 939

Why is Hash Table insertion time complexity worst case is not N log N

Looking at the fundamental structure of hash table. We know that it resizes WRT load factor or some other deterministic parameter. I get that if the resizing limit is reached within an insertion we need to create a bigger hash table and insert everything there. Here is the thing which I don't get.

Let's consider a hash table where each bucket contains an AVL - balanced BST. If my hash function returns the same index for every key then I would store everything in the same AVL tree. I know that this hash function would be a really bad function and would not be used but I'm doing a worst case scenario here. So after some time let's say that resizing factor has been reached. So in order to resize I created a new hash table and tried to insert every old elements in my previous table. Since the hash function mapped everything back into one AVL tree, I would need to insert all the N elements into the same AVL. N insertion on an AVL tree is N logN. So why is the worst case of insertion for hash tables considered O(N)?

Here is the proof of adding N elements into Avl three is N logN: Running time of adding N elements into an empty AVL tree

Upvotes: 5

Views: 935

Answers (1)

willeM_ Van Onsem
willeM_ Van Onsem

Reputation: 476594

In short: it depends on how the bucket is implemented. With a linked list, it can be done in O(n) under certain conditions. For an implementation with AVL trees as buckets, this can indeed, wost case, result in O(n log n). In order to calculate the time complexity, the implementation of the buckets should be known.

Frequently a bucket is not implemented with an AVL tree, or a tree in general, but with a linked list. If there is a reference to the last entry of the list, appending can be done in O(1). Otherwise we can still reach O(1) by prepending the linked list (in that case the buckets store data in reversed insertion order).

The idea of using a linked list, is that a dictionary that uses a reasonable hashing function should result in few collisions. Frequently a bucket has zero, or one elements, and sometimes two or three, but not much more. In that case, a simple datastructure can be faster, since a simpler data structure usually requires less cycles per iteration.

Some hash tables use open addressing where buckets are not separated data structures, but in case the bucket is already taken, the next free bucket is used. In that case, a search will thus iterate over the used buckets until it has found a matching entry, or it has reached an empty bucket.

The Wikipedia article on Hash tables discusses how the buckets can be implemented.

Upvotes: 3

Related Questions