Maeaex1
Maeaex1

Reputation: 755

Labeling data based on string value in python

I have a dataframe with 8000 rows, where column job_name contains strings with a short "job header" (see below). I created different lists containing the individual job positions I want to group.

job_hilfskraft = ['bretreuungskraft', 'pflegehilfskraft', 'pflegehelfer', 'krankenpflegehelfer','altenpflegerhelfer', 'pflegeassistent','pflegeassistenz','pflegehilfskräfte', 'pflegeassistenten', 'altenpflegehilfskraft', 'pflegeassistentin','altenpflegehelfer']
job_fachkraft = ['pflegefachkraft', 'altenpfleger','pflegefachkräfte','altenpflegerin', 'pflegekraft', 'krankenpfleger', 'krankenpfleger', 'altenpflegerin', 'altenpflegefachkraft', 'pflegemitarbeiter']
job_leitung = ['pflegedienstleitung', 'pflegedienstleiter', 'wohnbereichsleiter', 'einrichtungsleiter']
job_sonstige = ['küchenhilfskraft', 'reinigungskraft', 'küchenleiter', 'servicekraft', 'spülkraft', 'empfangskraft']

Example for a string including the job position.

    job_name
0   Küchenhilfskraft in Teilzeit gesucht!
1   Examinierter Krankenpfleger in ambulanter Station

Desired output:

        job_name                                        job_label
0   Küchenhilfskraft in Teilzeit gesucht!               sonstige
1   Examinierter Krankenpfleger in ambulanter Station   fachkraft

I use

df['job_label'] = ""

df['job_label'][df.job_name.str.contains('|'.join(job_hilfskraft))] = 'hilfskraft'
df['job_label'][df.job_name.str.contains('|'.join(job_leitung))] = 'leitung'
df['job_label'][df.job_name.str.contains('|'.join(job_sonstige))] = 'sonstige'
df['job_label'][df.job_name.str.contains('|'.join(job_fachkraft))] = 'fachkraft'

But it doesn't assign the labels to the corresponding rows or only a few... (<5% of the rows)

I also get the message for each "contains" line:

SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

Upvotes: 2

Views: 1739

Answers (1)

CJR
CJR

Reputation: 3985

This should fix your current problem.

df['job_label'] = ""

df.loc[df.job_name.str.contains('|'.join(job_hilfskraft)), 'job_label'] = 'hilfskraft'
df.loc[df.job_name.str.contains('|'.join(job_leitung)), 'job_label'] = 'leitung'
df.loc[df.job_name.str.contains('|'.join(job_sonstige)), 'job_label'] = 'sonstige'
df.loc[df.job_name.str.contains('|'.join(job_fachkraft)), 'job_label'] = 'fachkraft'

I would probably have written it like this:

lookup = {'hilfskraft': ['bretreuungskraft', 'pflegehilfskraft', 'pflegehelfer', 'krankenpflegehelfer','altenpflegerhelfer', 'pflegeassistent','pflegeassistenz','pflegehilfskräfte', 'pflegeassistenten', 'altenpflegehilfskraft', 'pflegeassistentin','altenpflegehelfer'],
'fachkraft': ['pflegefachkraft', 'altenpfleger','pflegefachkräfte','altenpflegerin', 'pflegekraft', 'krankenpfleger', 'krankenpfleger', 'altenpflegerin', 'altenpflegefachkraft', 'pflegemitarbeiter'],
'leitung': ['pflegedienstleitung', 'pflegedienstleiter', 'wohnbereichsleiter', 'einrichtungsleiter'],
'sonstige': ['küchenhilfskraft', 'reinigungskraft', 'küchenleiter', 'servicekraft', 'spülkraft', 'empfangskraft']}


df['job_label'] = ""

for replace, keywords in lookup.items():
    for k in keywords:
        df.loc[df.job_name.str.contains(k, case=False, regex=False), 'job_label'] = replace

Upvotes: 1

Related Questions