Reputation: 63
I'm trying to categorize latin/non-latin data through Python. I want the output to be 'columnname: Latin' if it's Latin, 'columnname: Non-Latin' if it's non-latin. Here's the data set I'm using:
name|company|address|ssn|creditcardnumber
Gauge J. Wiley|Crown Holdings|1916 Central Park Columbus|697-01-963|4175-0049-9703-9147
Dalia G. Valenzuela|Urs Corporation|8672 Cottage|Cincinnati|056-74-804|3653-0049-5620-71
هاها|Exide Technologies|هاها|Washington|139-09-346|6495-1799-7338-6619
I tried adding the below code. I don't get any error, but I get 'Latin' all the time. Is there any issue with the code?
if any(dataset.name.astype(str).str.contains(u'[U+0000-U+007F]')):
print ('Latin')
else:
print('Non-Latin')
And also I'd be happy if someone could tell me how to display the output as "column name: Latin", column name being iterated from dataframe
Upvotes: 1
Views: 365
Reputation: 862761
It depends what need - if check if any value has non latin values or all values have strings with numpy.where
:
df = pd.DataFrame({'name':[u"هاها",'a',u"aهاها"]})
#https://stackoverflow.com/a/3308844
import unicodedata as ud
latin_letters= {}
def is_latin(uchr):
try: return latin_letters[uchr]
except KeyError:
return latin_letters.setdefault(uchr, 'LATIN' in ud.name(uchr))
def only_roman_chars(unistr):
return all(is_latin(uchr)
for uchr in unistr
if uchr.isalpha())
#check if any
df['new1'] = np.where(df['name'].map(only_roman_chars), 'Latin','Non-Latin')
#check if all
df['new2'] = np.where(df.name.str.contains('[a-zA-Z]'), 'Latin','Non-Latin')
print (df)
name new1 new2
0 هاها Non-Latin Non-Latin
1 a Latin Latin
2 aهاها Non-Latin Latin
Upvotes: 1