Reputation: 25928
I have the following array:
[(True,False,True), (False,False,False), (False,False,True)]
If any element contains a True then they should all be true. So the above should become:
[(True,True,True), (False,False,False), (True,True,True)]
My below code attempts to do that but it simply converts all elements to True:
a = np.array([(True,False,True), (False,False,False), (False,True,False)], dtype='bool')
aint = a.astype('int')
print(aint)
aint[aint.sum() > 0] = (1,1,1)
print(aint.astype('bool'))
The output is:
[[1 0 1]
[0 0 0]
[0 1 0]]
[[ True True True]
[ True True True]
[ True True True]]
Upvotes: 0
Views: 230
Reputation: 23763
Create an array of True
's based on the original array's second dimension and assign it to all rows that have a True
in it.
>>> a
array([[ True, False, True],
[False, False, False],
[False, True, False]])
>>> a[a.any(1)] = np.ones(a.shape[1], dtype=bool)
>>> a
array([[ True, True, True],
[False, False, False],
[ True, True, True]])
>>>
Relies on Broadcasting.
Upvotes: 0
Reputation: 25259
ndarray.any
along axis=1
and np.tile
will get job done
np.tile(a.any(1)[:,None], a.shape[1])
array([[ True, True, True],
[False, False, False],
[ True, True, True]])
Upvotes: 0
Reputation: 14226
I'm no numpy
wizard but this should return what you want.
import numpy as np
def switch(arr):
if np.any(arr):
return np.ones(*arr.shape).astype(bool)
return arr.astype(bool)
np.apply_along_axis(switch, 1, a)
array([[ True, True, True],
[False, False, False],
[ True, True, True]])
Upvotes: 0
Reputation: 1018
You could try np.any
, which tests whether any array element along a given axis evaluates to True.
Here's a quick line of code that uses a list comprehension to get your intended result.
lst = [(True,False,True), (False,False,False), (False,False,True)]
result = [(np.any(x),) * len(x) for x in lst]
# result is [(True, True, True), (False, False, False), (True, True, True)]
Upvotes: 2