Reputation: 133
I run the SLIC (Simple Linear Iterative Clustering) superpixels algorithm from opencv and skimage on the same picture with, but got different results, the skimage slic result is better, Shown in the picture below.First one is opencv SLIC, the second one is skimage SLIC. I got several questions hope someonc can help.
===================================
# Opencv
src = cv2.imread('pic.jpg') #read image
# gaussian blur
src = cv2.GaussianBlur(src,(5,5),0)
# Convert to LAB
src_lab = cv.cvtColor(src,cv.COLOR_BGR2LAB) # convert to LAB
# SLIC
cv_slic = ximg.createSuperpixelSLIC(src_lab,algorithm = ximg.SLICO,
region_size = 32)
cv_slic.iterate()
# Skimage
src = io.imread('pic.jpg')
sk_slic = skimage.segmentation.slic(src,n_segments = 256, sigma = 5)
Image with superpixels centroid generated with the code below
# Measure properties of labeled image regions
regions = regionprops(labels)
# Scatter centroid of each superpixel
plt.scatter([x.centroid[1] for x in regions], [y.centroid[0] for y in regions],c = 'red')
but there is one superpixel less(top-left corner), and I found that
len(regions)
is 64 while len(np.unique(labels))
is 65 , why?
Upvotes: 8
Views: 4984
Reputation: 5768
I'm not sure why you think skimage slic is better (and I maintain skimage! 😂), but:
Upvotes: 7