Reputation: 3084
Is it possible to get the pre activation outputs of conv4_1
layer of VGG19, before the activation function?
The VGG19 network from Keras Applications has the following layers:
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv4 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
_________________________________________________________________
predictions (Dense) (None, 1000) 4097000
=================================================================
Total params: 143,667,240
Trainable params: 143,667,240
Non-trainable params: 0
I am assuming that the outputs of these are post activation (relu).
Upvotes: 1
Views: 738
Reputation: 6002
Yes, you are right, the activation functions are built into the layers here, so you cannot access the output before activation, unless you are willing to do some work:
First, make an exact copy of the layer whose output you want to observe, just leave out the activation function. If I understand you correctly, you want block4_conv1
, which is at index 12
. Inspect it's config like this:
>>> vgg.layers[12].name
'block4_conv1'
>>> vgg.layers[12].filters
512
>>> vgg.layers[12].kernel_size
(3, 3)
>>> vgg.layers[12].padding
'same'
Create a copy of this layer without activation:
block4_conv1_copy = Conv2D(filters=512, kernel_size=(3, 3), padding='same')
Now, create a new model consisting of all the vgg-layers 0-11 plus the copy of layer 12:
injection_model = Sequential(vgg.layers[:12] + [block4_conv1_copy])
injection_model.summary()
This should yield
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv4 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 28, 28, 512) 1180160
=================================================================
Total params: 3,505,728
Trainable params: 3,505,728
Non-trainable params: 0
_________________________________________________________________
Now block4_conv1_copy
knows its input shape, which is required to set the weights:
block4_conv1_copy.set_weights(vgg.layers[12].get_weights())
That should be it! Just call injection_model.predict(some_input)
and you can observe the output of layer 12 before activation.
Upvotes: 2