GRS
GRS

Reputation: 3084

How to get pre relu layers in Keras Application VGG19 network?

Is it possible to get the pre activation outputs of conv4_1 layer of VGG19, before the activation function?

The VGG19 network from Keras Applications has the following layers:

Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 224, 224, 3)       0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv4 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv4 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv4 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 143,667,240
Trainable params: 143,667,240
Non-trainable params: 0

I am assuming that the outputs of these are post activation (relu).

Upvotes: 1

Views: 738

Answers (1)

sebrockm
sebrockm

Reputation: 6002

Yes, you are right, the activation functions are built into the layers here, so you cannot access the output before activation, unless you are willing to do some work:

First, make an exact copy of the layer whose output you want to observe, just leave out the activation function. If I understand you correctly, you want block4_conv1, which is at index 12. Inspect it's config like this:

>>> vgg.layers[12].name
'block4_conv1'
>>> vgg.layers[12].filters
512
>>> vgg.layers[12].kernel_size
(3, 3)
>>> vgg.layers[12].padding
'same'

Create a copy of this layer without activation:

block4_conv1_copy = Conv2D(filters=512, kernel_size=(3, 3), padding='same')

Now, create a new model consisting of all the vgg-layers 0-11 plus the copy of layer 12:

injection_model = Sequential(vgg.layers[:12] + [block4_conv1_copy])
injection_model.summary()

This should yield

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv4 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 28, 28, 512)       1180160   
=================================================================
Total params: 3,505,728
Trainable params: 3,505,728
Non-trainable params: 0
_________________________________________________________________

Now block4_conv1_copy knows its input shape, which is required to set the weights:

block4_conv1_copy.set_weights(vgg.layers[12].get_weights())

That should be it! Just call injection_model.predict(some_input) and you can observe the output of layer 12 before activation.

Upvotes: 2

Related Questions