Reputation: 137
I got a project in which my task is to build network intrusion detection system to detect anomolies and attacks in the network.
There are two problems.
1. Binomial Classification: Activity is normal or attack
2. Multinomial classification: Activity is normal or DOS or PROBE or R2L or U2R
But before this I get some confusion in these terms Binomial/Multinomial Classification. Help me to understand/ if possible please share a sort code... which gives me more help.
I tried to search these term on google/youtube but can't find proper definition with some code
I do only these thing with my code:-
clean/transform/outlier detect/missing value treatment
model_selection/accuracy test
so my next step is to make classification of Binomial/Multinomial Classification Thanks for help...
Upvotes: 1
Views: 158
Reputation: 2411
First, do not hesitate to post on https://datascience.stackexchange.com/ for these kind of question that is more Data Science than coding issue.
Second, the answer is as simple as :
Binary (and not Binomial) Classification means only 2 targets to find.
=> In your case Normal vs Attack
Multilabel / Multiclass / Multinomial Classification means more than 2 targets to find.
=> Your case : Normal, DOS, PROBE, REL & E2R.
You can find example on https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
Upvotes: 2