Duncan
Duncan

Reputation: 21

Combined GRU and CNN network always returns the same value for all inputs

I am trying to train a combined CNN and GRU/LSTM to find out the number of objetcs in a series of pictures that move and the number of objects that do not move. For this reason I am using a CNN to process my images and consequently use a GRU. My problem is that the GRU always returns the same value for each input set. What could be reasons for that?

I have already tried to use different learning rates and adding linear layers after the GRU.

My network:


    class GRU(nn.Module):
        def __init__(self, **kwargs):
            super(GRU, self).__init__()
            self.n_class = int(kwargs.get("n_class"))
            self.seq_length = int(kwargs.get("seq_length"))
            self.input_shape = int(kwargs.get("input_shape"))
            self.n_channels = int(kwargs.get("n_channels"))
            self.conv1 = nn.Conv2d(in_channels=1 * seq_length, out_channels=4 * seq_length, kernel_size=5)
            self.conv2 = nn.Conv2d(in_channels=4 * seq_length, out_channels=8 * seq_length, kernel_size=5)
            self.conv3 = nn.Conv2d(in_channels=8 * seq_length, out_channels=16 * seq_length, kernel_size=5)
            self.rnn = nn.GRU(
                input_size=self.seq_length,
                hidden_size=64,
                num_layers=1,
                batch_first=True)
            self.linear = nn.Linear(64, 2)

        def forward(self, t):
            t = self.conv1(t)
            t = F.relu(t) 
            t = F.max_pool2d(t, kernel_size=2, stride=2)
            # second conv layer
            t = self.conv2(t)
            t = F.relu(t)
            t = F.max_pool2d(t, kernel_size=4, stride=4)
            # third conv layer
            t = self.conv3(t)
            t = F.relu(t)
            t = F.max_pool2d(t, kernel_size=3, stride=3)
            t = t.reshape(-1 , self.seq_length, 16 * 20 ** 2)
            t = t.permute(0,2,1)
            t, (h_n) =self.rnn(t)
            t = self.linear(t[:,-1])
            return t

and this is my training:

for epoch in range(number_epochs):
    for batch in get_batch_generator(batch_size, rootdir, seq_length=seq_length):
        current_batch = batch[0].cuda()
        current_labels = batch[1].cuda()
        pre = nw(current_batch)
        loss_func = torch.nn.MSELoss()
        loss = loss_func(pre, current_labels)
        loss.backward()
        optimizer = optim.Adam(nw.parameters(), lr=learning_rate)
        optimizer.step()

Here is an example of the output, actual labels:

tensor([[ 4.,  5.],
        [10.,  0.],
        [10.,  0.],
        [ 2.,  9.],
        [ 5.,  1.],
        [10.,  0.]], device='cuda:0')

Prediction of my network:

tensor([[2.0280, 1.1517],
        [2.0175, 1.1593],
        [2.0323, 1.1434],
        [2.0333, 1.1557],
        [2.0200, 1.1546],
        [2.0069, 1.1687]], device='cuda:0', grad_fn=<AddmmBackward>)

So for both classes the output is the same for both classes (moving and not moving objects), which should not be the case.

Upvotes: 1

Views: 1133

Answers (1)

Duncan
Duncan

Reputation: 21

Finally I found out that it is necessary to set the gradients to zero for every batch. For some reason this did not cause problems, when I was training normal CNNs without LSTM. The command that needs to be added in every training loop before the back-propagation:

optimizer.zero_grad()

or

nw.zero_grad()

Upvotes: 1

Related Questions