Reputation: 21
I am trying to train a combined CNN and GRU/LSTM to find out the number of objetcs in a series of pictures that move and the number of objects that do not move. For this reason I am using a CNN to process my images and consequently use a GRU. My problem is that the GRU always returns the same value for each input set. What could be reasons for that?
I have already tried to use different learning rates and adding linear layers after the GRU.
My network:
class GRU(nn.Module):
def __init__(self, **kwargs):
super(GRU, self).__init__()
self.n_class = int(kwargs.get("n_class"))
self.seq_length = int(kwargs.get("seq_length"))
self.input_shape = int(kwargs.get("input_shape"))
self.n_channels = int(kwargs.get("n_channels"))
self.conv1 = nn.Conv2d(in_channels=1 * seq_length, out_channels=4 * seq_length, kernel_size=5)
self.conv2 = nn.Conv2d(in_channels=4 * seq_length, out_channels=8 * seq_length, kernel_size=5)
self.conv3 = nn.Conv2d(in_channels=8 * seq_length, out_channels=16 * seq_length, kernel_size=5)
self.rnn = nn.GRU(
input_size=self.seq_length,
hidden_size=64,
num_layers=1,
batch_first=True)
self.linear = nn.Linear(64, 2)
def forward(self, t):
t = self.conv1(t)
t = F.relu(t)
t = F.max_pool2d(t, kernel_size=2, stride=2)
# second conv layer
t = self.conv2(t)
t = F.relu(t)
t = F.max_pool2d(t, kernel_size=4, stride=4)
# third conv layer
t = self.conv3(t)
t = F.relu(t)
t = F.max_pool2d(t, kernel_size=3, stride=3)
t = t.reshape(-1 , self.seq_length, 16 * 20 ** 2)
t = t.permute(0,2,1)
t, (h_n) =self.rnn(t)
t = self.linear(t[:,-1])
return t
and this is my training:
for epoch in range(number_epochs):
for batch in get_batch_generator(batch_size, rootdir, seq_length=seq_length):
current_batch = batch[0].cuda()
current_labels = batch[1].cuda()
pre = nw(current_batch)
loss_func = torch.nn.MSELoss()
loss = loss_func(pre, current_labels)
loss.backward()
optimizer = optim.Adam(nw.parameters(), lr=learning_rate)
optimizer.step()
Here is an example of the output, actual labels:
tensor([[ 4., 5.],
[10., 0.],
[10., 0.],
[ 2., 9.],
[ 5., 1.],
[10., 0.]], device='cuda:0')
Prediction of my network:
tensor([[2.0280, 1.1517],
[2.0175, 1.1593],
[2.0323, 1.1434],
[2.0333, 1.1557],
[2.0200, 1.1546],
[2.0069, 1.1687]], device='cuda:0', grad_fn=<AddmmBackward>)
So for both classes the output is the same for both classes (moving and not moving objects), which should not be the case.
Upvotes: 1
Views: 1133
Reputation: 21
Finally I found out that it is necessary to set the gradients to zero for every batch. For some reason this did not cause problems, when I was training normal CNNs without LSTM. The command that needs to be added in every training loop before the back-propagation:
optimizer.zero_grad()
or
nw.zero_grad()
Upvotes: 1