Reputation: 5781
I am trying to achieve a plot similar to this one:
The color shows the clustering of the datapoints.
My code so far:
import pandas as pd
import readTrc
import matplotlib.pyplot as plt
import numpy as np
import os
import gc
trcpath = 'filename.trc'
datX, datY, m = readTrc.readTrc(trcpath)
srx, sry = pd.Series(datX * 1000), pd.Series(datY * 1000)
df_plot = pd.concat([srx, sry], axis = 1)
df_plot.set_index(0, inplace = True)
fig, ax = plt.subplots()
#Eliminate Noise
df_plot[df_plot < 3] = 0
df = df_plot[df_plot > 3]
df[df < 3] = None
df = df.dropna()
#Plot Parameters
p = np.array(df[1].tolist()[:-1])
p_nach = np.array(df[1].tolist()[1:])
d_t = np.array(pd.Series(df.index).diff().tolist()[1:])
#Graph Limit
graphlim = 101
#Plot
plt.scatter(p, p_nach,
edgecolors = 'none',
c = p,
s = 20,
cmap=plt.cm.get_cmap('jet'))
plt.xlim(0,graphlim)
plt.ylim(0,graphlim)
plt.xticks(range(0,graphlim,int(graphlim/10)))
plt.yticks(range(0,graphlim,int(graphlim/10)))
plt.colorbar()
plt.grid(zorder = 0, alpha = 0.3)
ax.set_xlabel('p / mV')
ax.set_ylabel('p_nach / mV')
##plt.savefig(dpi = 300)
plt.show()
##plt.close()
##fig.clear()
##gc.collect()
print('Progress... done!')
As you can see, the colorbar does not represent the clustering and instead the place on the x-axis. How do I configure my colorbar to represent the amount of datapoints in an area?
Folder with files: Link
Upvotes: 1
Views: 2917
Reputation: 62403
import pandas as pd
import readTrc
import matplotlib.pyplot as plt
import numpy as np
import os
import gc
trcpath = 'filename.trc'
datX, datY, m = readTrc.readTrc(trcpath)
df = pd.DataFrame({'time': datX * 1000, 'volts': datY * 1000})
reduce_noise_df = df[df.volts >= 3.0]
d_t = reduce_noise_df.time.diff()[1:]
p = reduce_noise_df.volts[:-1]
p_nach = reduce_noise_df.volts[1:]
#Graph Limit
graphlim = 41
#Plot
fig, ax = plt.subplots(figsize=(6,6))
plt.scatter(p, p_nach,
edgecolors = 'none',
c = d_t,
s = 20,
cmap=plt.cm.get_cmap('jet'))
plt.xlim(0, graphlim)
plt.ylim(0, graphlim)
plt.xticks(range(0, graphlim, int(graphlim/10)))
plt.yticks(range(0, graphlim, int(graphlim/10)))
plt.colorbar()
plt.grid(zorder = 0, alpha = 0.3)
ax.set_xlabel('p / mV')
ax.set_ylabel('p_nach / mV')
plt.show()
c = p
instead of c = d_t
.Plot of waveform from your Le Croy WR640Zi colored by data density
import pandas as pd
import readTrc
import matplotlib.pyplot as plt
import numpy as np
import os
import gc
from scipy.stats import gaussian_kde
trcpath = 'filename.trc'
datX, datY, m = readTrc.readTrc(trcpath)
df = pd.DataFrame({'time': datX * 1000, 'volts': datY * 1000})
reduce_noise_df = df[df.volts >= 3.0]
y = np.array(reduce_noise_df.volts.tolist())
x = np.array(reduce_noise_df.time.tolist())
# Calculate point density
xy = np.vstack([x, y])
z = gaussian_kde(xy)(xy)
# Sort points by density
idx = z.argsort()
x, y, z = x[idx], y[idx], z[idx]
#Plot
fig, ax = plt.subplots(figsize=(6,6))
plt.scatter(x, y,
edgecolors = 'none',
c = z,
s = 20,
cmap=plt.cm.get_cmap('jet'))
plt.colorbar()
plt.grid(zorder = 0, alpha = 0.3)
ax.set_xlabel('Time (ms)')
ax.set_ylabel('Voltage (mV)')
plt.show()
Upvotes: 1