Analytics_TM
Analytics_TM

Reputation: 523

How to build a pandas dataframe from a nested for loop

I am working with the google cloud video intelligence API and I am trying to get the results into a pandas dataframe. The output class of the API is repeatedcompositecontainer. So, my thought was to build a dataframe inside the for loop used in the API function.

This is how the API function process the results:

    segment_labels = result.annotation_results[0].segment_label_annotations
    for i, segment_label in enumerate(segment_labels):
        print('Video label description: {}'.format(
            segment_label.entity.description))
            
        for category_entity in segment_label.category_entities:
            print('\tLabel category description: {}'.format(
                category_entity.description))

        for i, segment in enumerate(segment_label.segments):
            start_time = (segment.segment.start_time_offset.seconds +
                          segment.segment.start_time_offset.nanos / 1e9)
            end_time = (segment.segment.end_time_offset.seconds +
                        segment.segment.end_time_offset.nanos / 1e9)
            positions = '{}s to {}s'.format(start_time, end_time)
            confidence = segment.confidence
            print('\tSegment {}: {}'.format(i, positions))
            print('\tConfidence: {}'.format(confidence))
        print('\n')

With the help of this Stack Overflow article I created an empty list and appended the results to be later converted into a pandas dataframe as below:

    df = []
    
    # Process video/segment level label annotations
    segment_labels = result.annotation_results[0].segment_label_annotations
    for i, segment_label in enumerate(segment_labels):
        print('Video label description: {}'.format(
            segment_label.entity.description))
            
        for category_entity in segment_label.category_entities:
            print('\tLabel category description: {}'.format(
                category_entity.description))
            df.append({'Description': category_entity.description})

        for i, segment in enumerate(segment_label.segments):
            start_time = (segment.segment.start_time_offset.seconds +
                          segment.segment.start_time_offset.nanos / 1e9)
            end_time = (segment.segment.end_time_offset.seconds +
                        segment.segment.end_time_offset.nanos / 1e9)
            positions = '{}s to {}s'.format(start_time, end_time)
            confidence = segment.confidence
            df.append({'Confidence': segment.confidence, 'Start': start_time, 'End': end_time})
            print('\tSegment {}: {}'.format(i, positions))
            print('\tConfidence: {}'.format(confidence))
        print('\n')

When I tried only for the last for loop, it gives me a nice structured data frame as below

>>> frame = pd.DataFrame(df)
>>> frame
Confidence         End  Start
  0.704168  599.682416    0.0
  0.737053  599.682416    0.0
  0.832496  599.682416    0.0
  0.427637  599.682416    0.0
  0.518693  599.682416    0.0

However when I added the same to logic to the for loop, it gives a distorted dataframe as below

>>> frame = pd.DataFrame(df)
>>> frame
Confidence    Description         End  Start
       NaN     technology         NaN    NaN
  0.741133            NaN  599.682416    0.0
       NaN       keyboard         NaN    NaN
  0.328138            NaN  599.682416    0.0
       NaN         person         NaN    NaN
  0.436333            NaN  599.682416    0.0
       NaN         person         NaN    NaN

I was hoping if there is a way to fix it and get a data frame as below:

>>> frame = pd.DataFrame(df)
>>> frame
Confidence  Description    End        Start
  0.741133  technology   599.682416    0.0
  0.328138  keyboard     599.682416    0.0
  0.436333  person       599.682416    0.0

What can I try next?

Upvotes: 2

Views: 1592

Answers (1)

PMende
PMende

Reputation: 5460

Change your code like the following:

    df = []

    # Process video/segment level label annotations
    segment_labels = result.annotation_results[0].segment_label_annotations
    for i, segment_label in enumerate(segment_labels):
        print('Video label description: {}'.format(
            segment_label.entity.description))
        label_row = {} # Create a dictionary for the label
        for category_entity in segment_label.category_entities:
            print('\tLabel category description: {}'.format(
                category_entity.description))
            # Add the description
            label_row['Description'] = category_entity.description

        for i, segment in enumerate(segment_label.segments):
            start_time = (segment.segment.start_time_offset.seconds +
                          segment.segment.start_time_offset.nanos / 1e9)
            end_time = (segment.segment.end_time_offset.seconds +
                        segment.segment.end_time_offset.nanos / 1e9)
            positions = '{}s to {}s'.format(start_time, end_time)
            confidence = segment.confidence
            row_segment_info = {'Confidence': segment.confidence, 'Start': start_time, 'End': end_time})
            # Add the segment info for this row
            label_row.update(row_segment_info)
            df.append(label_row) # Now add the row
            print('\tSegment {}: {}'.format(i, positions))
            print('\tConfidence: {}'.format(confidence))
        print('\n')

In summary: you were adding lists of rows in each subloop. You want to add the row only once.

Upvotes: 2

Related Questions