Reputation: 122
I wrote a filter function:
f :: (a -> Bool) -> [a] -> [a]
f p xs = case xs of
[] -> []
x : xs' -> if p x
then x : f p xs'
else f p xs'
To understand bind, I want to implement this using bind. What I was thinking about:
f p xs = xs >>= (\x xs -> if p x then x : f p xs else f p xs)
But I get this error:
* Couldn't match expected type `[a]' with actual type `[a] -> [a]'
* The lambda expression `\ x xs -> ...' has two arguments,
but its type `a -> [a]' has only one
In the second argument of `(>>=)', namely
`(\ x xs -> if p x then x : f p xs else f p xs)'
In the expression:
xs >>= (\ x xs -> if p x then x : f p xs else f p xs)
* Relevant bindings include
xs :: [a] (bound at <interactive>:104:5)
p :: a -> Bool (bound at <interactive>:104:3)
f :: (a -> Bool) -> [a] -> [a] (bound at <interactive>:104:1)
Successfully did it using foldr
:
f p xs = foldr (\x xs -> if p x then x : f p xs else f p xs) [] xs
What's going wrong?
Upvotes: 3
Views: 112
Reputation: 71065
To understand bind, first implement the no-op:
id_list xs = concat [ [x] | x <- xs ] = [ y | x <- xs, y <- [x ] ]
Now for the filter, augment it as
filter p xs = concat [ [x | p x] | x <- xs ] = [ y | x <- xs, y <- [x | p x] ]
How is this code using bind, you ask? If we're using MonadComprehensions
, it does.
The explicit do
-notation re-write is straightforward:
id_list xs = do { x <- xs ; y <- [ x ] ; return y }
filter p xs = do { x <- xs ; y <- [ x | p x] ; return y }
And of course, for lists,
[x] == return x
[x | p x] == if p x then return x else mzero
mzero == []
concat == join
This brings us back to an explicitly recursive way to code filter
as
filter p [] = []
filter p (x:xs) = [x | p x] ++ filter p xs
With bind, we think in terms of transforming each element of the list individually, into the list of results (none, one, or several) for that one input element. Your foldr
-based code breaks this.
So, the code itself is just
filter_bind p xs = xs >>= (\x -> [x | p x])
because we have
xs >>= f == join (fmap f xs)
== concat (map f xs)
== concat [ f x | x <- xs ]
== foldr (++) []
[ f x | x <- xs ]
with the last snippet corresponding to the explicitly recursive definition above.
See also
Upvotes: 2
Reputation: 476584
To understand bind, i want to implement this as bind.
There is no bind here. The bind is added in case of a do
expression. The above is not a do-expression, so there is no bind here.
You can however write this with bind, like:
f p xs = xs >>= \x -> if p x then [x] else []
but this is not a literal mapping of the original function, we simply make use of the instance Monad []
implementation here. Nevertheless, your f
is just filter :: (a -> Bool) -> [a] -> [a]
here.
Upvotes: 4