Reputation: 301
I have a dataframe(df1) with 3 columns fname,lname,zip.
fname lname zip
ty zz 123
rt kk 345
yu pp 678
another master_df with only a list of zip_codes.
zip_codes
123
345
555
667
I want to write a pyspark sql code to check if zip-codes present in df1 are the ones mentioned in master list. Whichever is not present in master should go into another dataframe.
I tried :
df3 = df1.filter(df1["zip"]!=master["zip_codes"])
My required output_df should show 678 as its not present in master_df
Upvotes: 2
Views: 508
Reputation: 138
You can make use substract method here. Here's my code snippet.
from pyspark.sql import SparkSession
SS = SparkSession.builder.getOrCreate()
data_1 = [
{"fname": "ty", "lname": "zz", "zip": 123},
{"fname": "rt", "lname": "kk", "zip": 345},
{"fname": "yu", "lname": "pp", "zip": 678}]
data_2 = [
{"zip": 123},
{"zip": 345},
{"zip": 555},
{"zip": 667},]
# Creating dataframes
df_1 = SS.createDataFrame(data_1)
df_2 = SS.createDataFrame(data_2)
# Creating dataframe with only zip
df_1_sliced = df_1.select("zip")
# Finding the difference
df_diff = df_1_sliced.subtract(df_2)
df_diff.show() # Count should be zero
+---+
|zip|
+---+
|678|
+---+
This will create a new dataframe containing all the zip's which are not present in zip codes.
Upvotes: 1
Reputation: 1710
df2=df1.join(master,(df1.zip==master.zip_codes),'left_outer').where(master['zip_codes'].isNull())
df2.show()
+-----+-----+---+--------=+
|fname|lname|zip|zip_codes|
+-----+-----+---+---------+
| yu| pp|678| null|
+-----+-----+---+---------+
Upvotes: 1
Reputation: 577
Let me know if this helps:
zip_codes = master_df.select(['zip_codes']).rdd.flatMap(lambda x :x).collect()
@F.udf(StringType())
def increment(x):
if x in zip_codes:
return("True")
else:
return("False")
TableA = TableA.withColumn('zip_presence', increment('zip'))
df_with_zipcode_match = TableA.filter(TableA['zip_presence'] == "True").drop('zip_presence')
df_without_zipcode_match = TableA.filter(TableA['zip_presence'] == "False").drop('zip_presence')
df_with_zipcode_match.show()
df_without_zipcode_match.show()
#### Input DFs####
+---------+-----+---+
| fname|lname|zip|
+---------+-----+---+
| ty| zz|123|
| Monkey| kk|345|
| Ninja| pp|678|
|Spaghetti| pgp|496|
+---------+-----+---+
+---------+
|zip_codes|
+---------+
| 123|
| 345|
| 555|
| 667|
+---------+
#### Output DFs####
+------+-----+---+
| fname|lname|zip|
+------+-----+---+
| ty| zz|123|
|Monkey| kk|345|
+------+-----+---+
+---------+-----+---+
| fname|lname|zip|
+---------+-----+---+
| Ninja| pp|678|
|Spaghetti| pgp|496|
+---------+-----+---+
Upvotes: 1