Reputation: 205
I'm going around in circles with all the options in numpy
/scipy
. Dot product, multiply, matmul, tensordot, einsum etc.
I want to multiply a 1d vector with a 2d matrix (which will be sparse csr) and sum the result so I have a 1d vector
eg
oneDarray = np.array([1, 2, 3])
matrix = np.array([[1,2,3],[4,5,6],[7,8,9]])
# multiple and sum the oneDarray against the rows of the matrix
# eg 1*1 + 1*2 + 1*3 = 6, 2*4 + 2*5 + 2*6 = 30, 3*7 + 3*8 + 3*9 = 42
so output we be [6,30,53]
# multiple and sum the oneDarray against the columns of the matrix
# eg 1*1 + 1*4 + 1*7 = 28, 2*2 + 2*5 + 2*8 = 30, 3*3 + 3*6 + 3*9 = 486
so output we be [28,30,486]
Any help would be greatly appreciated.
Upvotes: 1
Views: 972
Reputation: 8811
Well you have some calculation error in your question.The first one will result in [6, 30, 72]
and the second part will result in [12, 30, 54]
. If I understand correctly, the first one can be solved with
np.sum(oneDarray * matrix.T, axis=0)
and the second part with
np.sum(np.multiply(matrix, oneDarray), axis=0)
Upvotes: 0
Reputation: 231595
# 1*1 + 1*2 + 1*3 = 6, 2*4 + 2*5 + 2*6 = 30, 3*7 + 3*8 + 3*9 = 42
1*1 + 1*2 + 1*3 = 6
2*4 + 2*5 + 2*6 = 30,
3*7 + 3*8 + 3*9 = 42
1*(1 + 2 + 3) = 6,
2*(4 + 5 + 6) = 30,
3*(7 + 8 + 9) = 42
So this can calculated in several ways:
In [92]: oneDarray*(matrix.sum(axis=1))
Out[92]: array([ 6, 30, 72])
In [93]: np.einsum('i,ij->i', oneDarray, matrix)
Out[93]: array([ 6, 30, 72])
In [94]: (oneDarray[:,None]*matrix).sum(axis=1)
Out[94]: array([ 6, 30, 72])
It doesn't fit the usual dot
(matrix) product, which would have an einsum
expression like ij,j->i
(wrong index is summed).
The other expression is (your values are wrong, except the middle one):
In [95]: matrix.sum(axis=0)*oneDarray
Out[95]: array([12, 30, 54])
If the matrix is sparse csr:
In [96]: M = sparse.csr_matrix(matrix)
In [97]: M
Out[97]:
<3x3 sparse matrix of type '<class 'numpy.int64'>'
with 9 stored elements in Compressed Sparse Row format>
In [98]: M.sum(axis=1)
Out[98]:
matrix([[ 6],
[15],
[24]])
In [99]: M.sum(axis=1).A1*oneDarray
Out[99]: array([ 6, 30, 72])
The sum
is a (3,1) np.matrix
. A1
flattens it into a 1d ndarray
, making the element wise multiplication easier.
In [103]: M.sum(axis=0)
Out[103]: matrix([[12, 15, 18]], dtype=int64)
In [104]: M.sum(axis=0).A1*oneDarray
Out[104]: array([12, 30, 54], dtype=int64)
In [116]: np.multiply(M.sum(0), oneDarray)
Out[116]: matrix([[12, 30, 54]], dtype=int64)
Upvotes: 2