Reputation: 1322
I have three Spark Datasets of the same type A
case class A(col_a: String, col_b: Int, col_c: Int, col_d: Int, col_e: Int)
val ds_one = Dataset[A](Seq(a, 12, 0, 0, 0), Seq(b, 11, 0, 0, 0))
val ds_two = Dataset[A](Seq(a, 0, 16, 0, 0), Seq(b, 0, 73, 0, 0))
val ds_three = Dataset[A](Seq(a, 0, 0, 9, 0), Seq(b, 0, 0, 64, 0))
How do I reduce the three datasets into one Dataset[A]:
ds_combined = Dataset[A](Seq(a,12,16,9,0), Seq(b,11,73,64,0))
Upvotes: 1
Views: 333
Reputation: 3470
It looks like you are just grouping by col_a
and getting the max
import org.apache.spark.sql.expressions._
import org.apache.spark.sql.functions._
case class A(col_a: String, col_b: Int, col_c: Int, col_d: Int, col_e: Int)
val ds_one = Seq(A("a", 12, 0, 0, 0), A("b", 11, 0, 0, 0)).toDS
val ds_two = Seq(A("a", 0, 16, 0, 0), A("b", 0, 73, 0, 0)).toDS
val ds_three = Seq(A("a", 0, 0, 9, 0), A("b", 0, 0, 64, 0)).toDS
val ds_union = ds_one.union(ds_two).union(ds_three)
val ds_combined = ds_union
.groupBy("col_a")
.agg(max("col_b").alias("col_b")
, max("col_c").alias("col_c")
, max("col_d").alias("col_d")
, max("col_e").alias("col_e"))
.as[A]
ds_combined.show
ds_combined:org.apache.spark.sql.Dataset[A]
+-----+-----+-----+-----+-----+
|col_a|col_b|col_c|col_d|col_e|
+-----+-----+-----+-----+-----+
| b| 11| 73| 64| 0|
| a| 12| 16| 9| 0|
+-----+-----+-----+-----+-----+
Upvotes: 1