Reputation: 2127
I am implementing YOLO network with a selfdefine loss.
Say there two tensor,GT and PD (ground truth and predicts).both are 2 dims matrix of 4x4.
Assume GT is:
0,0,0,0
0,1,0,0
0,0,1,0
0,0,0,0
PD has the same size with some random nums.
Here I need to calc Mean Squared Error separately.
calc MSE with ones in GT and calc MSE with zeros in GT seperately.
I prefer to use a mask to cover the unrelated elements, so the calculation with only calc the related elements. I already implemented this in numpy, but don't know how to do this with tf(v1.14)
import numpy as np
import numpy.ma as ma
conf = y_true[...,0]
conf = np.expand_dims(conf,-1)
conf_pred = y_pred[...,0]
conf_pred = np.expand_dims(conf_pred,-1)
noobj_conf = ma.masked_equal(conf,1) #cover grid with objects
obj_conf = ma.masked_equal(conf,0) #cover grid without objects
loss_obj = np.sum(np.square(obj_conf - conf_pred))
loss_noobj = np.sum(np.square(noobj_conf - conf_pred))
Any suggestions about how to implement this in tensorflow?
Upvotes: 3
Views: 267
Reputation: 8699
If I understand you correctly, you want to calculate mean square errors of 0's and 1's separately.
You can do something like below:
y_true = tf.constant([[0,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,0]], dtype=tf.float32)
y_pred = tf.random.uniform([4, 4], minval=0, maxval=1)
# find indices where 0 is present in y_true
indices0 = tf.where(tf.equal(y_true, tf.zeros([1.])))
# find indices where 1 is present in y_true
indices1 = tf.where(tf.equal(y_true, tf.ones([1.])))
# find all values in y_pred which are present at indices0
y_pred_indices0 = tf.gather_nd(y_pred, indices0)
# find all values in y_pred which are present at indices1
y_pred_indices1 = tf.gather_nd(y_pred, indices1)
# mse loss calculations
mse0 = tf.losses.mean_squared_error(labels=tf.gather_nd(y_true, indices0), predictions=y_pred_indices0)
mse1 = tf.losses.mean_squared_error(labels=tf.gather_nd(y_true, indices1), predictions=y_pred_indices1)
# mse0 = tf.reduce_sum(tf.squared_difference(tf.gather_nd(y_true, indices0), y_pred_indices0))
# mse1 = tf.reduce_sum(tf.squared_difference(tf.gather_nd(y_true, indices1), y_pred_indices1))
with tf.Session() as sess:
y_, loss0, loss1 = sess.run([y_pred, mse0, mse1])
print(y_)
print(loss0, loss1)
output:
[[0.12770343 0.43467927 0.9362457 0.09105921]
[0.46243036 0.8838414 0.92655015 0.9347118 ]
[0.14018488 0.14527774 0.8395766 0.14391887]
[0.1209656 0.7793218 0.70543754 0.749542 ]]
0.341359 0.019614244
Upvotes: 1