Reputation: 11
I have a curvefit
problem
I have two functions
y = ax+b
y = ax^2+bx-2.3
I have one set of data each for the above functions
I need to find a and b using least square method combining both the functions
I was using fminsearch
function to minimize the sum of squares of errors of these two functions.
I am unable to use this method in lsqcurvefit
Kindly help me
Regards Ram
Upvotes: 1
Views: 730
Reputation: 1705
y = ax+b
y = ax^2+bx-2.3
In order to not confuse y of the first equation with y of the second equation we use distinct notations :
u = ax+b
v = ax^2+bx+c
The method of linear regression combined for the two functions is shown on the joint page :
HINT : If you want to find by yourself the matrixial equation appearing above, follow the Gene's answer.
Upvotes: 1
Reputation: 46960
I think you'll need to worry less about which library routine to use and more about the math. Assuming you mean vertical offset least squares, then you'll want
D = sum_{i=1..m}(y_Li - a x_Li + b)^2 + sum_{i=j..n}(y_Pj - a x_Pj^2 - b x_Pj + 2.3)^2
where there are m points (x_Li, y_Li) on the line and n points (x_Pj, y_Pj) on the parabola. Now find partial derivatives of D with respect to a and b. Setting them to zero provides two linear equations in 2 unknowns, a and b. Solve this linear system.
Upvotes: 1