Reputation: 6326
Consider the following example code
import pandas as pd
import numpy as np
pd.set_option('display.expand_frame_repr', False)
foo = pd.read_csv("foo2.csv", skipinitialspace=True, index_col='Index')
foo.loc[:, 'Date'] = pd.to_datetime(foo.Date)
for i in range(0, len(foo)-1):
if foo.at[i, 'Type'] == 'Reservation':
for j in range(i+1, len(foo)):
if foo.at[j, 'Type'] == 'Payout':
foo.at[j, 'Nights'] = foo.at[i, 'Nights']
break
mask = (foo['Date'] >= '2018-03-31') & (foo['Date'] <= '2019-03-31')
foo2019 = foo.loc[mask]
foopayouts2019 = foo2019.loc[foo2019['Type'] == 'Payout']
foopayouts2019.loc[:, 'Nights'] = foopayouts2019['Nights'].apply(np.int64)
# foopayouts2019.loc[:, 'Nights'] = foopayouts2019['Nights'].astype(np.int64, copy=False)
with foo2.csv
as:
Index,Date,Type,Nights,Amount,Payout
0,03/07/2018,Reservation,2.0,1000.00,
1,03/07/2018,Payout,,,1000.00
2,09/11/2018,Reservation,3.0,1500.00,
3,09/11/2018,Payout,,,1500.00
4,02/16/2019,Reservation,2.0,2000.00,
5,02/16/2019,Payout,,,2000.00
6,04/25/2019,Reservation,7.0,1200.00,
7,04/25/2019,Payout,,,1200.00
This gives the following warning:
/usr/lib/python2.7/dist-packages/pandas/core/indexing.py:543: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
self.obj[item] = s
The warning does not mention a line number, but appears to be coming from the line:
foopayouts2019.loc[:, 'Nights'] = foopayouts2019['Nights'].apply(np.int64)
At least, if I comment that line out, the error goes away. So, I have two questions.
.loc
where
appropriate, including in that line where the warning is (possibly)
coming from. If the problem is actually earlier, where is it?Second, which is the better choice, .apply
or astype
, as used in
the following lines of code?
foopayouts2019.loc[:, 'Nights'] = foopayouts2019['Nights'].apply(np.int64)
# foopayouts2019.loc[:, 'Nights'] = foopayouts2019['Nights'].astype(np.int64, copy=False)
It seems that both of them work, except for that warning.
Upvotes: 2
Views: 167
Reputation: 75080
I would change a few things in the code:
We are checking if the current row is Reservation
and the next row is Payout
by using shift()
and ffill
-ing the values where condition matches by using np.where()
foo.Date=pd.to_datetime(foo.Date) #convert to datetime
c=foo.Type.eq('Reservation')&foo.Type.shift(-1).eq('Payout')
foo.Nights=np.where(~c,foo.Nights.ffill(),foo.Nights) #replace if else with np.where
Or:
c=foo.Type.shift().eq('Reservation')&foo.Type.eq('Payout')
np.where(c,foo.Nights.ffill(),foo.Nights)
Then use series.between()
to check if dates fall between 2 dates:
foo2019 = foo[foo.Date.between('2018-03-31','2019-03-31')].copy() #changes
foopayouts2019 = foo2019[foo2019['Type'] == 'Payout'].copy() #changes .copy()
Or directly:
foopayouts2019=foo[foo.Date.between('2018-03-31','2019-03-31')&foo.Type.eq('Payout')].copy()
foopayouts2019.loc[:, 'Nights'] = foopayouts2019['Nights'].apply(np.int64) #.astype(int)
Index Date Type Nights Amount Payout
3 3 2018-09-11 Payout 3 NaN 1500.0
5 5 2019-02-16 Payout 2 NaN 2000.0
Upvotes: 1