Reputation: 772
From this:
Ordinal Timestamp id_easy lat/long
1 2016-06-01T08:18:46.000Z 22 (44.9484, 7.7728)
2 2016-06-01T08:28:05.000Z 22 (44.9503, 7.7748)
3 2016-06-01T08:28:09.000Z 22 (44.9503, 7.7748)
1 2016-06-01T06:31:05.000Z 16 (45.0314, 7.6181)
Based on unique values of id_easy
and also by illustrating time range when it happened to this:
Timestamp id_easy lat/long
08:18:46-08:28:09 22 (44.9484, 7.7728),(44.9503, 7.7748),(44.9503, 7.7748)
Upvotes: 0
Views: 35
Reputation: 3331
You should use the groupby()
function. Here is what it could look like :
df.groupby('id_easy').agg({'lat/long' : list, 'Timestamp':min})
Output :
id_easy lat/long \
0 16 [(45.0314,7.6181)]
1 22 [(44.9484,7.7728), (44.9503,7.7748), (44.9503,...
Timestamp
0 2016-06-01T06:31:05.000Z
1 2016-06-01T08:18:46.000Z
Upvotes: 1