Reputation: 369
I have two pandas df with the exact same column names. One of these columns is named id_number which is unique to each table (What I mean is an id_number can only appear once in each df). I want to find all records that have the same id_number but have at least one different value in any column and store these records in a new pandas df.
I've tried merging (more specifically inner join), but it keeps only one record with that specific id_number so I can't look for any differences between the two dfs.
Let me provide some example to provide a clearer explanation:
Example dfs:
First DF:
id_number name type city
1 John dev Toronto
2 Alex dev Toronto
3 Tyler dev Toronto
4 David dev Toronto
5 Chloe dev Toronto
Second DF:
id_number name type city
1 John boss Vancouver
2 Alex dev Vancouver
4 David boss Toronto
5 Chloe dev Toronto
6 Kyle dev Vancouver
I want the resulting df to contain the following records:
id_number name type city
1 John dev Toronto
1 John boss Vancouver
2 Alex dev Toronto
2 Alex dev Vancouver
4 David dev Toronto
4 David Boss Toronto
NOTE: I would not want records with id_number 5 to appear in the resulting df, that is because the records with id_number 5 are exactly the same in both dfs.
In reality, there are 80 columns for each record, but I think these tables make my point a little clearer. Again to summarize, I want the resulting df to contain records with same id_numbers, but a different value in any of the other columns. Thanks in advance for any help!
Upvotes: 3
Views: 557
Reputation: 153470
Here is, a way using pd.concat
, drop_duplicates
and duplicated
:
pd.concat([df1, df2]).drop_duplicates(keep=False).sort_values('id_number')\
.loc[lambda x: x.id_number.duplicated(keep=False)]
Output:
id_number name type city
0 1 John dev Toronto
0 1 John boss Vancouver
1 2 Alex dev Toronto
1 2 Alex dev Vancouver
3 4 David dev Toronto
2 4 David boss Toronto
Upvotes: 1
Reputation: 323306
Here is one way using nunique
then we pick those id_number
more than 1
and slice them out
s = pd.concat([df1, df2])
s = s.loc[s.id_number.isin(s.groupby(['id_number']).nunique().gt(1).any(1).loc[lambda x : x].index)]
s
Out[654]:
id_number name type city
0 1 John dev Toronto
1 2 Alex dev Toronto
3 4 David dev Toronto
0 1 John boss Vancouver
1 2 Alex dev Vancouver
2 4 David boss Toronto
Upvotes: 2