Reputation: 75
I am working with jupyterlab
, specifically rendering a confusion matrix. However, when rendering the matrix, it seems as if there is something wrong because the figure is not fully rendered.
I already had installed the sklearn packages, but still the same problem. I tried different alternatives, but still rendering a snipped confusion matrix.
Below an example of a code that I know would render a proper confusion matrix.
from sklearn.metrics import classification_report, confusion_matrix
import itertools
import matplotlib.pyplot as plt
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, yhat, labels=[2,4])
np.set_printoptions(precision=2)
print (classification_report(y_test, yhat))
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=['Benign(2)','Malignant(4)'],normalize= False, title='Confusion matrix')
From the above code, I am obtaining this confusion matrix:
However, I expected to have a non snipped confusion matrix, such as:
credits: @Calvin Duy Canh Tran
UPDATE 2019-08-05:
To don't have doubts about the code used above, I used and additional reference: Instead, I tried the code that is one of the examples for the documentation for Confusion Matrix is scikit-learn
. The link is this one https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
Prior to run the above-described code, I installed the correspondent module:
pip install -q scikit-plot
Unfortunately, the output continues rendering snipped matrixes (see the picture):
The correct output should be this one (ignore the orientation):
Upvotes: 2
Views: 2181
Reputation: 16966
There seems to be a conflict between matplotlib version 3.1.1 and scikit-plot. Refer to this GitHub issue, which shows a similar problem.
Downgrading matplotlib to version 3.1.0 could be a immediate fix.
Upvotes: 1
Reputation: 33127
Do not pass the confusion matrix as input argument to the plotting function. You need to pass the y_test, y_pred
and the confusion matrix will be calculated internally.
To plot it use this:
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
# Plot non-normalized confusion matrix
plot_confusion_matrix(y_test, y_pred, classes=['Benign(2)','Malignant(4)'],normalize= False, title='Confusion matrix')
instead of
plot_confusion_matrix(cnf_matrix, classes=['Benign(2)','Malignant(4)'],normalize= False, title='Confusion matrix')
Reference: https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
Upvotes: 0