Cohen
Cohen

Reputation: 984

Python3 Read Html Table With Pandas

Need some help here. Plan to extract all the statistical data of this site https://lotostats.ro/toate-rezultatele-win-for-life-10-20

My issue is that I am not able to read the table. I can't do this nor for the first page.

Can someone pls help?

import requests
import lxml.html as lh
import pandas as pd
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_doc, 'html.parser')

url='https://lotostats.ro/toate-rezultatele-win-for-life-10-20'
#Create a handle, page, to handle the contents of the website
page = requests.get(url)
#Store the contents of the website under doc
doc = lh.fromstring(page.content)
#Parse data that are stored between <tr>..</tr> of HTML
tr_elements = doc.xpath('//tr')

#Create empty list
col=[]
i=0
#For each row, store each first element (header) and an empty list
for t in tr_elements[0]:
    i+=1
    name=t.text_content()
    print ('%d:"%s"'%(i,name))
    col.append((name,[]))

#Since out first row is the header, data is stored on the second row onwards
for j in range(1,len(tr_elements)):
    #T is our j'th row
    T=tr_elements[j]

    #If row is not of size 10, the //tr data is not from our table 
    # if len(T)!=10:
    #     break

    #i is the index of our column
    i=0

    #Iterate through each element of the row
    for t in T.iterchildren():
        data=t.text_content() 
        #Check if row is empty
        if i>0:
        #Convert any numerical value to integers
            try:
                data=int(data)
            except:
                pass
        #Append the data to the empty list of the i'th column
        col[i][1].append(data)
        #Increment i for the next column
        i+=1

Dict={title:column for (title,column) in col}
df=pd.DataFrame(Dict)
df.head()   
print(df)  

Upvotes: 1

Views: 178

Answers (1)

QHarr
QHarr

Reputation: 84475

Data is dynamically added. You can find the source, returning json, in network tab

import requests


r = requests.get('https://lotostats.ro/all-rez/win_for_life_10_20?draw=1&columns%5B0%5D%5Bdata%5D=0&columns%5B0%5D%5Bname%5D=&columns%5B0%5D%5Bsearchable%5D=true&columns%5B0%5D%5Borderable%5D=false&columns%5B0%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B0%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B1%5D%5Bdata%5D=1&columns%5B1%5D%5Bname%5D=&columns%5B1%5D%5Bsearchable%5D=true&columns%5B1%5D%5Borderable%5D=false&columns%5B1%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B1%5D%5Bsearch%5D%5Bregex%5D=false&start=0&length=20&search%5Bvalue%5D=&search%5Bregex%5D=false&_=1564996040879').json()

You can decode that and likely (investigate that) remove timestamp part (or simply replace with random number)

import requests

r = requests.get('https://lotostats.ro/all-rez/win_for_life_10_20?draw=1&columns[0][data]=0&columns[0][name]=&columns[0][searchable]=true&columns[0][orderable]=false&columns[0][search][value]=&columns[0][search][regex]=false&columns[1][data]=1&columns[1][name]=&columns[1][searchable]=true&columns[1][orderable]=false&columns[1][search][value]=&columns[1][search][regex]=false&start=0&length=20&search[value]=&search[regex]=false&_=1').json()

To see the lottery lines:

print(r['data'])

The draw parameter seems to be related to page of draws e.g. 2nd page:

https://lotostats.ro/all-rez/win_for_life_10_20?draw=2&columns[0][data]=0&columns[0][name]=&columns[0][searchable]=true&columns[0][orderable]=false&columns[0][search][value]=&columns[0][search][regex]=false&columns[1][data]=1&columns[1][name]=&columns[1][searchable]=true&columns[1][orderable]=false&columns[1][search][value]=&columns[1][search][regex]=false&start=20&length=20&search[value]=&search[regex]=false&_=1564996040880

You can alter the length to retrieve more results. For example, I can deliberately oversize it to get all results

import requests

r = requests.get('https://lotostats.ro/all-rez/win_for_life_10_20?draw=1&columns[0][data]=0&columns[0][name]=&columns[0][searchable]=true&columns[0][orderable]=false&columns[0][search][value]=&columns[0][search][regex]=false&columns[1][data]=1&columns[1][name]=&columns[1][searchable]=true&columns[1][orderable]=false&columns[1][search][value]=&columns[1][search][regex]=false&start=0&length=100000&search[value]=&search[regex]=false&_=1').json()

print(len(r['data']))

Otherwise, you can set the length param to a set number, do an initial request, and calculate the number of pages from the total (r['recordsFiltered']) records count divided by results per page.

import math

total_results = r['recordsFiltered']
results_per_page = 20
num_pages = math.ceil(total_results/results_per_page)

Then do a loop to get all results (remembering to alter draw param). Obviously, the less requests the better.

Upvotes: 2

Related Questions