Reputation: 5683
How can I simulate data so that the coefficients recovered by lm
are determined to be particular pre-determined values and have normally distributed residuals? For example, could I generate data so that lm(y ~ 1 + x)
will yield (Intercept) = 1.500
and x = 4.000
? I would like the solution to be versatile enough to work for multiple regression with continuous x
(e.g., lm(y ~ 1 + x1 + x2)
) but there are bonus points if it works for interactions as well (lm(y ~ 1 + x1 + x2 + x1*x2)
). Also, it should work for small N (e.g., N < 200).
I know how to simulate random data which is generated by these parameters (see e.g. here), but that randomness carries over to variation in the estimated coefficients, e.g., Intercept = 1.488
and x = 4.067
.
Related: It is possible to generate data that yields pre-determined correlation coefficients (see here and here). So I'm asking if this can be done for multiple regression?
Upvotes: 4
Views: 1504
Reputation: 6921
One approach is to use a perfectly symmetrical noise. The noise cancels itself so the estimated parameters are exactly the input parameters, yet the residuals appear normally distributed.
x <- 1:100
y <- cbind(1,x) %*% c(1.5, 4)
eps <- rnorm(100)
x <- c(x, x)
y <- c(y + eps, y - eps)
fit <- lm(y ~ x)
# (Intercept) x
# 1.5 4.0
plot(fit)
Residuals are normally distributed...
... but exhibit an anormally perfect symmetry!
EDIT by OP: I wrote up a general-purpose code exploiting the symmetrical-residuals trick. It scales well with more complex models. This example also shows that it works for categorical predictors and interaction effects.
library(dplyr)
# Data and residuals
df = tibble(
# Predictors
x1 = 1:100, # Continuous
x2 = rep(c(0, 1), each=50), # Dummy-coded categorical
# Generate y from model, including interaction term
y_model = 1.5 + 4 * x1 - 2.1 * x2 + 8.76543 * x1 * x2,
noise = rnorm(100) # Residuals
)
# Do the symmetrical-residuals trick
# This is copy-and-paste ready, no matter model complexity.
df = bind_rows(
df %>% mutate(y = y_model + noise),
df %>% mutate(y = y_model - noise) # Mirrored
)
# Check that it works
fit <- lm(y ~ x1 + x2 + x1*x2, df)
coef(fit)
# (Intercept) x1 x2 x1:x2
# 1.50000 4.00000 -2.10000 8.76543
Upvotes: 4
Reputation: 132989
You could do rejection sampling:
set.seed(42)
tol <- 1e-8
x <- 1:100
continue <- TRUE
while(continue) {
y <- cbind(1,x) %*% c(1.5, 4) + rnorm(length(x))
if (sum((coef(lm(y ~ x)) - c(1.5, 4))^2) < tol) continue <- FALSE
}
coef(lm(y ~ x))
#(Intercept) x
# 1.500013 4.000023
Obviously, this is a brute-force approach and the smaller the tolerance and the more complex the model, the longer this will take. A more efficient approach should be possible by providing residuals as input and then employing some matrix algebra to calculate y values. But that's more of a maths question ...
Upvotes: 2