Reputation: 10996
I have the following objects:
s1 = "1_1_1_1_1"
s2 = "2_1_1_1_1"
s3 = "3_1_1_1_1"
Please note that the value of s1, s2, s3 can change in another example.
I then have the follwoing data frame:
set.seed(666)
df = data.frame(draw = c(1,2,3,4,1,2,3,4,1,2,3,4),
resp = c(1,1,1,1,2,2,2,2,3,3,3,3),
"1_1_1_1_1" = runif(12),
"2_1_1_1_1" = runif(12),
"3_1_1_1_1" = runif(12)).
Please note that the column names of may data frame will change based on the values of s1,s2,s3.
I now want to achieve the following:
df
has the highest value and store it as a value in a new column (values are supposed to be either of 1,2 or 3, depending on if the highest value is the first, second or third of these variables).resp
and count how often my max value is 1, 2 or 3.So the outcome from 1. should be:
draw resp 1_1_1_1_1 2_1_1_1_1 3_1_1_1_1 max
1 1 0.774 0.095 0.806 3
2 1 0.197 0.142 0.266 3
...
And the outcome from 2. is supposed to be:
resp first_max second_max third_max
1 1 1 2
2 2 1 1
3 1 2 1
My problem is that tidyverse's rowwise function is deprecated and that I don't know how I can dynamically address columns in a tidyverse pipe by column names which a re stored externally (here in s1, s2, s3). One last note: I might be overcomplicating things by trying to go by the column names, when, in fact, the positions of the columns that I'm interested in are always at column position 3:5.
Upvotes: 0
Views: 184
Reputation: 5138
Here is one way to get what you want. For a sligthly different format, you can use count
rather than table
but this matches your expected output. Hope this helps!!
library(dplyr)
df %>%
mutate(max_val = max.col(select(., starts_with("X")))) %>%
select(resp, max_val) %>%
table()
max_val
resp 1 2 3
1 1 1 2
2 2 1 1
3 1 2 1
Or, you could do this:
df %>%
mutate(max_val = max.col(.[3:5])) %>%
count(resp, max_val) %>%
mutate(max_val = paste0("max_", max_val)) %>%
spread(value = n, key = max_val)
resp max_1 max_2 max_3
<dbl> <int> <int> <int>
1 1 1 1 2
2 2 2 1 1
3 3 1 2 1
Upvotes: 3
Reputation: 6106
calculate max using pmap
(row-wise iteration)
max_cols <- pmap_dbl(unname(df),function(x,y,...){
vals <- unlist(list(...))
return(which(vals == max(vals)))
})
result <- df %>% add_column(max = max_cols)
> result
draw resp X1_1_1_1_1 X2_1_1_1_1 X3_1_1_1_1 max
1 1 1 0.4551478 0.70061232 0.618439890 2
2 2 1 0.3667764 0.26670969 0.024742605 1
3 3 1 0.6806912 0.03233215 0.004014758 1
4 4 1 0.9117449 0.42926492 0.885247456 1
5 1 2 0.1886954 0.34189707 0.985054492 3
6 2 2 0.5569398 0.78043504 0.100714130 2
7 3 2 0.9791164 0.92823982 0.676584495 1
8 4 2 0.9174654 0.74627116 0.485582287 1
9 1 3 0.3681890 0.69622331 0.672346875 2
10 2 3 0.5510356 0.99651637 0.482430518 2
11 3 3 0.4283281 0.12832611 0.018095649 1
12 4 3 0.6168436 0.64381995 0.655178701 3
Reshape the data frame.
reshape2::dcast(result,resp~max,fun.aggregate = length,value.var = "max")
resp 1 2 3
1 1 1 1 2
2 2 2 1 1
3 3 1 2 1
Upvotes: 1