Reputation: 8024
I have this dataframe
test_y
Out[55]:
Results
47302 0
65704 0
63472 1
47247 1
5674 0
5405 1
65501 0
14418 1
18521 1
7631 1
1221 0
23915 1
10548 0
18698 1
46644 0
56585 1
50018 0
54615 1
22613 1
when I run the prediction I get an array which I can not compare to the dataframe
test_y_predictions = model.predict(test_X)
test_y_predictions
Out[57]:
array([[0.49395287],
[0.26348412],
[0.6578461 ],
...,
[0.74228203],
[0.4677609 ],
[0.6267687 ]], dtype=float32)
I want to find how many correct results I got
I tried this but got an error
test_y_predictions = round(test_y_predictions)
TypeError: type numpy.ndarray doesn't define round method
How can I compare what I got from prediction and what I have?
Upvotes: 0
Views: 740
Reputation: 1083
I think you need this one.
test_y_predictions.round()
>>> a=np.array([[0.49395287],
[0.26348412],
[0.6578461 ],
[0.74228203],
[0.4677609 ],
[0.6267687 ]])
>>> a.round()
array([[0.],
[0.],
[1.],
[1.],
[0.],
[1.]])
When you want to compare the prediction result with the labels, you can try classification_report
metrics.classification_report(test_y, test_y_predictions)
Upvotes: 2