Reputation: 894
I'm using R and I have my data on data.tables objects. My data is of the format ID, Date1, Date2, Row
For each ID I can have more than one entry, and the two dates define a time interval.
I want to be able to aggregate all the entries by id and overlapping time intervals. I do know how to do it with for loops and such, but I wonder if there is a better way.
Example:
data = data.table(
id = c(1,1,1,2,2,3,3),
Row = c(1,2,3,4,5,6,7),
Date1 = c("2018-01-01",
"2018-01-05",
"2018-01-21",
"2018-01-01",
"2018-01-15",
"2018-01-01",
"2018-01-19"),
Date2 = c("2018-01-10",
"2018-01-20",
"2018-01-22",
"2018-01-31",
"2018-01-19",
"2018-01-15",
"2018-01-23"))
The desired output would be something that identifies the following groups of rows: ((1,2),(3),(4,5),(6),(7)) , so that I can generate a new ID, based on this grouping.
Upvotes: 0
Views: 81
Reputation: 25223
Referencing How to flatten / merge overlapping time periods and adding group number recursively:
s <- 0L
data[, g := {
r <- s + c(0L, cumsum(shift(Date1, -1L) > cummax(as.integer(Date2)))[-.N])
s <- r[.N] + 1L
r
}, by=.(id)]
output:
id Row Date1 Date2 g
1: 1 1 2018-01-01 2018-01-10 0
2: 1 2 2018-01-05 2018-01-20 0
3: 1 3 2018-01-21 2018-01-22 1
4: 2 4 2018-01-01 2018-01-31 2
5: 2 5 2018-01-15 2018-01-19 2
6: 3 6 2018-01-01 2018-01-15 3
7: 3 7 2018-01-19 2018-01-23 4
data:
library(data.table)
data = data.table(
id = c(1,1,1,2,2,3,3),
Row = c(1,2,3,4,5,6,7),
Date1 = c("2018-01-01","2018-01-05","2018-01-21","2018-01-01","2018-01-15","2018-01-01","2018-01-19"),
Date2 = c("2018-01-10","2018-01-20","2018-01-22","2018-01-31","2018-01-19","2018-01-15","2018-01-23"))
cols <- c("Date1", "Date2")
data[, (cols) := lapply(.SD, as.Date, format="%Y-%m-%d"), .SDcols=cols]
Upvotes: 1