Reputation: 77
I am experiencing a bug in my submissions for Leetcode 28 that has thus far eluded me. My code works for most test cases but I am getting hung up on scenarios such as haystack = "mississippi", needle = "issip".
I have tried debugging and found that the entire haystack string is iterated through and it is returning -1 or not found. The substring length it is finding at each occurrence of 'i' is 4, 1, 1.
int strStr(string haystack, string needle) {
if (needle.empty()) {
return 0;
}
if (haystack.empty() && !needle.empty()) {
return -1;
}
int i = 0, j = 0, ans = 0;
for (i; i < haystack.length(); i++) {
if (haystack[i] == needle[0]) {
j = 0;
ans = i;
for (j; j < needle.length(); j++) {
/*
if (haystack[i++] == needle[j]) {
continue;
}
else {
break;
}
*/
if (haystack[i++] != needle[j]) {
break;
}
}
if (j == needle.length()) {
return ans;
}
}
if (j == needle.length()) {
return ans;
}
}
return -1;
}
Input: "mississippi", "issip" Output: -1 (ans = 10, j = 1)
Upvotes: 2
Views: 1007
Reputation: 311048
The function has several drawbacks.
For starters it should be declared like
std::string::size_type strStr( const std::string &haystack, const std::string &needle );
and if the second string is not found in the first string the function should return std::string::npos
as all similar member functions of the class std::string do.
The function parameters shell be of constant referenced types.
The condition in this if-statement
if (haystack.empty() && !needle.empty())
has a redundant operand. It could be rewritten like
if (haystack.empty())
This loop
for (i; i < haystack.length(); i++)
should stop its iterations when the size of the tail of the first string is less than the size of the second string.
in this if-statement
if (haystack[i++] != needle[j]) {
the variable i is incremented that results in incrementing the variable two times: one in this statement and the second time in the loop.
The second pair of these statements
if (j == needle.length()) {
return ans;
is redundant.
The function can be written the following way as it is shown in the demonstrative program.
#include <iostream>
#include <string>
std::string::size_type strStr( const std::string &haystack, const std::string &needle )
{
if ( needle.empty() )
{
return 0;
}
else if ( haystack.empty() )
{
return -std::string::npos;
}
else
{
std::string::size_type ans = std::string::npos;
auto n1 = haystack.length();
auto n2 = needle.length();
for ( std::string::size_type i = 0; ans == std::string::npos && i + n2 <= n1; i++ )
{
std::string::size_type j = 0;
while ( j < n2 && haystack[i+j] == needle[j] ) j++;
if ( j == n2 ) ans = i;
}
return ans;
}
}
int main()
{
std::string haystack( "mississippi" );
std::string needle( "issip" );
std::cout << strStr( haystack, needle ) << '\n';
return 0;
}
Its output is
4
Upvotes: 3
Reputation: 11430
The problem is that you modify i in
if (haystack[i++] != needle[j]) {
Thus preventing a second potential match from being explored. Try
if (haystack[i + j] != needle[j]) {
and fix any knock-on issues. I expect it to work as-is, though.
Upvotes: 2