Reputation: 3298
I am trying to compute A^TA
using cuSparse. A is a large but sparse matrix. The problem is when I use the function cusparseDcsrgemm
, the computed output is wrong. Please see the below minimal example to reproduce the problem.
CMakeLists.txt
cmake_minimum_required(VERSION 3.11)
project(sample)
find_package(CUDA REQUIRED)
add_executable(${PROJECT_NAME} main.cpp)
target_compile_features(${PROJECT_NAME} PUBLIC cxx_std_14)
target_include_directories(${PROJECT_NAME} SYSTEM PUBLIC ${CUDA_INCLUDE_DIRS})
target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES} ${CUDA_cusparse_LIBRARY})
main.cpp
#include <iostream>
#include <vector>
#include <cuda_runtime_api.h>
#include <cusparse_v2.h>
int main(){
// 3x3 identity matrix in CSR format
std::vector<int> row;
std::vector<int> col;
std::vector<double> val;
row.emplace_back(0);
row.emplace_back(1);
row.emplace_back(2);
row.emplace_back(3);
col.emplace_back(0);
col.emplace_back(1);
col.emplace_back(2);
val.emplace_back(1);
val.emplace_back(1);
val.emplace_back(1);
int *d_row;
int *d_col;
double *d_val;
int *d_out_row;
int *d_out_col;
double *d_out_val;
cudaMalloc(reinterpret_cast<void **>(&d_row), row.size() * sizeof(int));
cudaMalloc(reinterpret_cast<void **>(&d_col), col.size() * sizeof(int));
cudaMalloc(reinterpret_cast<void **>(&d_val), val.size() * sizeof(double));
// we know identity transpose times identity is still identity
cudaMalloc(reinterpret_cast<void **>(&d_out_row), row.size() * sizeof(int));
cudaMalloc(reinterpret_cast<void **>(&d_out_col), col.size() * sizeof(int));
cudaMalloc(reinterpret_cast<void **>(&d_out_val), val.size() * sizeof(double));
cudaMemcpy(
d_row, row.data(), sizeof(int) * row.size(), cudaMemcpyHostToDevice);
cudaMemcpy(
d_col, col.data(), sizeof(int) * col.size(), cudaMemcpyHostToDevice);
cudaMemcpy(
d_val, val.data(), sizeof(double) * val.size(), cudaMemcpyHostToDevice);
cusparseHandle_t handle;
cusparseCreate(&handle);
cusparseMatDescr_t descr;
cusparseCreateMatDescr(&descr);
cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO);
cusparseMatDescr_t descr_out;
cusparseCreateMatDescr(&descr_out);
cusparseSetMatType(descr_out, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatIndexBase(descr_out, CUSPARSE_INDEX_BASE_ZERO);
cusparseDcsrgemm(handle,
CUSPARSE_OPERATION_TRANSPOSE,
CUSPARSE_OPERATION_NON_TRANSPOSE,
3,
3,
3,
descr,
3,
d_val,
d_row,
d_col,
descr,
3,
d_val,
d_row,
d_col,
descr_out,
d_out_val,
d_out_row,
d_out_col);
cudaMemcpy(
row.data(), d_out_row, sizeof(int) * row.size(), cudaMemcpyDeviceToHost);
cudaMemcpy(
col.data(), d_out_col, sizeof(int) * col.size(), cudaMemcpyDeviceToHost);
cudaMemcpy(
val.data(), d_out_val, sizeof(double) * val.size(), cudaMemcpyDeviceToHost);
std::cout << "row" << std::endl;
for (int i : row)
{
std::cout << i << std::endl; //show 0 0 0 0, but it should be 0 1 2 3
}
std::cout << "col" << std::endl;
for (int i : col)
{
std::cout << i << std::endl; //show 1 0 0, but it should be 0 1 2
}
std::cout << "val" << std::endl;
for (int i : val)
{
std::cout << i << std::endl; //show 1 0 0, but it should be 1 1 1
}
return 0;
}
What am I doing wrong?
Upvotes: 1
Views: 568
Reputation: 861
You simply forgot one step because you tried to make an easy example. In the documentation it is stated:
The cuSPARSE library adopts a two-step approach to complete sparse matrix. In the first step, the user allocates
csrRowPtrC
ofm+1
elements and uses the functioncusparseXcsrgemmNnz()
to determinecsrRowPtrC
and the total number of nonzero elements.
What you did is to allocate m+1
(m=3
in your example) elements for d_row_out
and you determined the total number of nonzero elements which is 3
in your example.
But you missed do "determine d_row_out
" which means to fill the vector with the right values.
In your simple example you could just add the line
cudaMemcpy(d_out_row, row.data(), sizeof(int) * row.size(), cudaMemcpyHostToDevice);
somewhere before your gemm call.
The more general approach of course would be to use the suggested function cusparseXcsrgemmNnz()
.
You could add the following lines somewhere before your gemm call (many values are still hardcoded as in your example, so it's not really general):
int nnz_check[1];
cusparseXcsrgemmNnz(handle,
CUSPARSE_OPERATION_TRANSPOSE,
CUSPARSE_OPERATION_NON_TRANSPOSE,
3,
3,
3,
descr,
3,
d_row,
d_col,
descr,
3,
d_row,
d_col,
descr_out,
d_out_row, // the values this pointer points to will be set
nnz_check); // the number of nonzeros will also be calculated
assert(nnz_check[0] == 3);
Side note: The documentation says "[[DEPRECATED]] use cusparse<t>csrgemm2()
instead. The routine will be removed in the next major release", that is version 11.
The problem still remains for the second gemm version though as the same two-step approach is used.
Upvotes: 1