Pankesh Patel
Pankesh Patel

Reputation: 1302

Lambda (connected with Kinesis Data Stream) function generating cloudwatch logs continuously

In my current project, my objective is to detect different objects from a Stream of Frames. The video frames are captured using camera, connected with the Raspberry PI.

The following is a rough architecture. enter image description here

The architecture design is as follows:

This lambda function receives streams of images, and trigger AWS Rekognition and sends an email notification.

My problem is even if I stop (by pressing Ctrl + C) ( video_cap.py python file, running on raspberry PI), the lambda function keep writing logs (reporting old received frames) into CloudWatch.

Please help me - how can I fix this issues? Please let me know if you need any additional information.

video_cap.py file code

# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# Licensed under the Amazon Software License (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at
#     http://aws.amazon.com/asl/
# or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions and limitations under the License.

import sys
import cPickle
import datetime
import cv2
import boto3
import time
import cPickle
from multiprocessing import Pool
import pytz

kinesis_client = boto3.client("kinesis")
rekog_client = boto3.client("rekognition")

camera_index = 0 # 0 is usually the built-in webcam
capture_rate = 30 # Frame capture rate.. every X frames. Positive integer.
rekog_max_labels = 123
rekog_min_conf = 50.0

#Send frame to Kinesis stream
def encode_and_send_frame(frame, frame_count, enable_kinesis=True, enable_rekog=False, write_file=False):
    try:
        #convert opencv Mat to jpg image
        #print "----FRAME---"
        retval, buff = cv2.imencode(".jpg", frame)

        img_bytes = bytearray(buff)

        utc_dt = pytz.utc.localize(datetime.datetime.now())
        now_ts_utc = (utc_dt - datetime.datetime(1970, 1, 1, tzinfo=pytz.utc)).total_seconds()

        frame_package = {
            'ApproximateCaptureTime' : now_ts_utc,
            'FrameCount' : frame_count,
            'ImageBytes' : img_bytes
        }

        if write_file:
            print("Writing file img_{}.jpg".format(frame_count))
            target = open("img_{}.jpg".format(frame_count), 'w')
            target.write(img_bytes)
            target.close()

        #put encoded image in kinesis stream
        if enable_kinesis:
            print "Sending image to Kinesis"
            response = kinesis_client.put_record(
                StreamName="FrameStream",
                Data=cPickle.dumps(frame_package),
                PartitionKey="partitionkey"
            )
            print response

        if enable_rekog:
            response = rekog_client.detect_labels(
                Image={
                    'Bytes': img_bytes
                },
                MaxLabels=rekog_max_labels,
                MinConfidence=rekog_min_conf
            )
            print response

    except Exception as e:
        print e


def main():

    argv_len = len(sys.argv)

    if argv_len > 1 and sys.argv[1].isdigit():
        capture_rate = int(sys.argv[1])

    cap = cv2.VideoCapture(0) #Use 0 for built-in camera. Use 1, 2, etc. for attached cameras.
    pool = Pool(processes=3)

    frame_count = 0
    while True:
        # Capture frame-by-frame
        ret, frame = cap.read()
        #cv2.resize(frame, (640, 360));

        if ret is False:
            break

        if frame_count % capture_rate == 0:
            result = pool.apply_async(encode_and_send_frame, (frame, frame_count, True, False, False,))

        frame_count += 1

        # Display the resulting frame
        cv2.imshow('frame', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
    return

if __name__ == '__main__':
    main()

Lambda function (lambda_function.py)

from __future__ import print_function

import base64
import json
import logging
import _pickle as cPickle
#import time
from datetime import datetime
import decimal
import uuid
import boto3
from copy import deepcopy

logger = logging.getLogger()
logger.setLevel(logging.INFO) 
rekog_client = boto3.client('rekognition')

# S3 Configuration
s3_client = boto3.client('s3')
s3_bucket = "bucket-name-XXXXXXXXXXXXX"
s3_key_frames_root = "frames/"

# SNS Configuration
sns_client = boto3.client('sns')
label_watch_sns_topic_arn = "SNS-ARN-XXXXXXXXXXXXXXXX" 

#Iterate on rekognition labels. Enrich and prep them for storage in DynamoDB
labels_on_watch_list = []
labels_on_watch_list_set = []
text_list_set = []

# List for detected text
text_list = []

def process_image(event, context):

    # Start of for Loop
    for record in event['Records']:
        frame_package_b64 = record['kinesis']['data']
        frame_package = cPickle.loads(base64.b64decode(frame_package_b64))

        img_bytes = frame_package["ImageBytes"]

        approx_capture_ts = frame_package["ApproximateCaptureTime"]
        frame_count = frame_package["FrameCount"]

        now_ts = datetime.now()

        frame_id = str(uuid.uuid4())
        approx_capture_timestamp = decimal.Decimal(approx_capture_ts)

        year = now_ts.strftime("%Y")
        mon = now_ts.strftime("%m")
        day = now_ts.strftime("%d")
        hour = now_ts.strftime("%H")

        #=== Object Detection from an Image =====

        # AWS Rekognition - Label detection from an image
        rekog_response = rekog_client.detect_labels(
            Image={
                'Bytes': img_bytes
            },
            MaxLabels=10,
            MinConfidence= 90.0
        )

        logger.info("Rekognition Response" + str(rekog_response) )

        for label in rekog_response['Labels']:
            lbl = label['Name']
            conf = label['Confidence']
            labels_on_watch_list.append(deepcopy(lbl)) 

        labels_on_watch_list_set = set(labels_on_watch_list)

        #print(labels_on_watch_list)
        logger.info("Labels on watch list ==>" + str(labels_on_watch_list_set) )

            # Vehicle Detection
            #if (lbl.upper() in (label.upper() for label in ["Transportation", "Vehicle", "Van" , "Ambulance" , "Bus"]) and conf >= 50.00):
                #labels_on_watch_list.append(deepcopy(label))

        #=== Detecting text from a detected Object
        # Detect text from the detected vehicle using detect_text()
        response=rekog_client.detect_text( Image={ 'Bytes': img_bytes })
        textDetections=response['TextDetections']
        for text in textDetections:
            text_list.append(text['DetectedText']) 

        text_list_set = set(text_list)   
        logger.info("Text Detected ==>" + str(text_list_set))

    # End of for Loop

    # SNS Notification
    if len(labels_on_watch_list_set) > 0 :
        logger.info("I am in SNS Now......")
        notification_txt = 'On {} Vehicle was spotted with {}% confidence'.format(now_ts.strftime('%x, %-I:%M %p %Z'), round(label['Confidence'], 2))
        resp = sns_client.publish(TopicArn=label_watch_sns_topic_arn,
            Message=json.dumps( 
                {
                    "message": notification_txt + " Detected Object Categories " + str(labels_on_watch_list_set) + " " + " Detect text on the Object " + " " + str(text_list_set)
                }
            ))

    #Store frame image in S3
    s3_key = (s3_key_frames_root + '{}/{}/{}/{}/{}.jpg').format(year, mon, day, hour, frame_id)
    s3_client.put_object(
        Bucket=s3_bucket,
        Key=s3_key,
        Body=img_bytes
    )

    print ("Successfully processed  records.")
    return {
        'statusCode': 200,
        'body': json.dumps('Successfully processed  records.')
    }

def lambda_handler(event, context):
   logger.info("Received event from Kinesis ......" )
   logger.info("Received event ===>" + str(event))
   return process_image(event, context)

Lambda permission enter image description here

The following is IAM policy attached with the Lambda role. enter image description here

The following is the Kinesis Data Stream Log (Dated 17th August, 2019 - 1:54 PM IST). The last time, the data ingested through Raspberry PI on 16th August, 2019 - 6:45 PM)

enter image description here

enter image description here

Upvotes: 1

Views: 853

Answers (1)

WaltDe
WaltDe

Reputation: 1832

It looks like you have about 117K records in the stream but slowly processing 1 records at time. How long does it take the lambda to process one record? I would get how long your lambda runs , update the python put code to sleep a little longer the lambda runs (start with 20% longer), then restart with an empty queue, and watch the stats in real time.

Upvotes: 2

Related Questions