Reputation: 9348
A column in Excel file shows the short-form of some descriptions. They are one-to-one relationship in a dictionary.
I want to look them up each, and write the looked up values to a new file, side by side with the short forms.
Xlrd and xlwt are basic so I used them:
product_dict = {
"082" : "Specified brand(s)",
"035" : "Well known brand",
"069" : "Brandless ",
"054" : "Good middle class restaurant",
"062" : "Modest class restaurant"}
import xlwt, xlrd
workbook = xlrd.open_workbook("C:\\file.xlsx")
old_sheet = workbook.sheet_by_index(0)
book = xlwt.Workbook(encoding='cp1252', style_compression = 0)
sheet = book.add_sheet('Sheet1', cell_overwrite_ok = True)
for row_index in range(1, old_sheet.nrows):
new_list = []
Cell_a = str(old_sheet.cell(row_index, 0).value)
for each in Cell_a.split(", "):
new_list.append(product_dict[each])
sheet.write(row_index, 0, Cell_a)
sheet.write(row_index, 1, "; ".join(new_list))
book.save("C:\\files-1.xls")
It looks ok. But I want to learn the Pandas way to do the same.
How does the Pandas way looked like, in addition to below? Thank you.
data = {'Code': ["082","069","054"]}
df = pd.DataFrame(data)
Upvotes: 0
Views: 77
Reputation: 75080
With the data given, I would first map
the dictionary to a new column, then aggregate
with ','.join
:
final=df.assign(New=df.Code.map(product_dict)).agg(','.join).to_frame().T
Code New
0 082,069,054 Specified brand(s),Brandless ,Good middle clas...
Where:
print(df.assign(New=df.Code.map(product_dict)))
is:
Code New
0 082 Specified brand(s)
1 069 Brandless
2 054 Good middle class restaurant
Upvotes: 1
Reputation: 423
If you have a lookup dictionary in the form of a python dictionary, you can do this:
import pandas as pd
lookup_dict = {'1': 'item_1', '2':'item_2'}
# Create example dataframe
df_to_process = pd.DataFrame()
df_to_process['code'] = ['1, 2', '1', '2']
# Use .apply and lambda function to split 'code' and then do a lookup on each item
df_to_process['code_items'] = df_to_process['code'].apply(lambda x: '; '.join([lookup_dict[code] for code in x.replace(' ','').split(',')]))
With your examples:
import pandas as pd
product_dict = {
"082" : "Specified brand(s)",
"035" : "Well known brand",
"069" : "Brandless ",
"054" : "Good middle class restaurant",
"062" : "Modest class restaurant"}
data = {'Code': ["082","069","054"]}
df = pd.DataFrame(data)
df['code_items'] = df['Code'].apply(lambda x: '; '.join([product_dict[code] for code in x.replace(' ','').split(',')]))
Upvotes: 1