Reputation: 45
I want to read two columns S1_max and S2_max from a dataframe
data
. Wherever a value is present in the S1_max column I want to check that each S1_max
is succeeded by a corresponding S2_max
signal. If so I calculate the time delta between the S1_max
and S2_max
signal. This result is then indexed at the datetime[64ns]
index of the S2_max column in a separate dict
d
which is then appended to a list
delta_data
. How can I add this result to my already existing data
dataframe at the corresponding datetime[64ns]
index?
This is my creation of delta_data
:
#time between each S2 global maxima: 86 ns/samp freq 200 = 0.43 ns
#Checking that each S1 is succeeded by a corresponging S2 signal and calculating the time delta:
delta_data = []
diff_S1 = 0
diff_S2 = 0
i = 0
while((i + diff_S1 + 1 < len(peak_indexes_S1)) and (i + diff_S2<len(peak_indexes_S2))):
# Find next ppg peak after S1 peak
while (df["S2"].index[peak_indexes_S2[i + diff_S2]] < df["S1"].index[peak_indexes_S1[i+diff_S1]]):
diff_S2=diff_S2+1
while (df["S1"].index[peak_indexes_S1[i+diff_S1+1]] < df["S2"].index[peak_indexes_S2[i + diff_S2]]):
diff_S1=diff_S1+1
i_peak_S2 = peak_indexes_S2[i + diff_S2]
i_peak_S1 = peak_indexes_S1[i + diff_S1]
d={}
d["td"] = (df["S2"].index[i_peak_S2]-df["S1"].index[i_peak_S1]).microseconds
d["time"] = df["S2"].index[i_peak_S2]
PATdata.append(d)
i = i + 1
time_delta=pd.DataFrame(delta_data)
delta_data
printed out:
td time
0 355000 2019-08-07 13:06:31.010
1 355000 2019-08-07 13:06:31.850
2 355000 2019-08-07 13:06:32.695
This is my data
dataframe:
l1 l2 l3 l4 S1 S2 S2_max S1_max
2019-08-07 13:11:21.485 0.572720 0.353433 0.701320 1.418840 4.939690 2.858326 2.858326 NaN
2019-08-07 13:11:21.490 0.572807 0.353526 0.701593 1.419052 4.939804 2.854604 NaN 4.939804
This dataframe is created by:
data = pd.read_csv('file.txt')
data.columns = ['l1','l2','l3','l4','S1','S2']
nbrMeasurments = sum(1 for line in open('file.txt'))
data.index = pd.date_range('2019-08-07 13:06:30'), periods=nbrMeasurments-1, freq="5L")
I have tried DataFrame.combine_first
and append
.
Also, the same problem occurs when trying to add another dataframe to data
. This dataframe doesn't have ms in the datetime frame:
S3 S4
Date
2019-08-07 13:06:30 111 61
Upvotes: 1
Views: 208
Reputation: 1394
As far as I could understand you are trying to append another column to an existing DataFrame.
here how to do it:
df1 = pd.DataFrame({'names':['bla', 'blah', 'blahh'], 'values':[1,2,3]})
df2_to_concat = pd.DataFrame({'put_me_as_a_new_column':['row1', 'row2', 'row3']})
pd.concat([df1.reset_index(drop=True), df2_to_concat.reset_index(drop=True)], axis=1)
The reset_index(drop=True)
makes sure you don't produce NaNs or duplicate index columns.
Upvotes: 0